diff --git a/PROJECT_ANALYSIS.md b/PROJECT_ANALYSIS.md deleted file mode 100644 index ba7604e..0000000 --- a/PROJECT_ANALYSIS.md +++ /dev/null @@ -1,31 +0,0 @@ -# 斗地主AI项目完整性分析报告 - -**分析时间:** 2025-02-21 04:57:32 UTC -**分析人:** SisMaker -**项目版本:** 2.0.0 - -## 核心功能完整性评估 - -### 1. 基础游戏系统 (完成度:95%) -✅ 游戏规则引擎 -✅ 牌型判断系统 -✅ 玩家管理 -✅ 游戏流程控制 - -### 2. AI决策系统 (完成度:90%) -✅ 基础决策逻辑 -✅ 深度学习模型 -✅ 对手建模 -✅ 策略优化器 - -### 3. 学习系统 (完成度:85%) -✅ 经验积累机制 -✅ 模型训练系统 -✅ 在线学习能力 -❌ 分布式学习支持 - -### 4. 性能优化 (完成度:80%) -✅ 基础性能优化 -✅ 内存管理 -❌ 完整的性能测试 -❌ 负载均衡 \ No newline at end of file diff --git a/README.md b/README.md index 49ef6a0..8c0b264 100644 --- a/README.md +++ b/README.md @@ -16,162 +16,5 @@ Build ## 系统架构 -### 核心模块 -1. **游戏核心模块** - - cards.erl: 牌类操作 - - card_rules.erl: 游戏规则 - - game_server.erl: 游戏服务器 - - player.erl: 玩家管理 - -2. **AI系统模块** - - deep_learning.erl: 深度学习引擎 - - advanced_ai_player.erl: 高级AI玩家 - - matrix.erl: 矩阵运算 - - optimizer.erl: 优化器 - -3. **系统支持模块** - - parallel_compute.erl: 并行计算 - - performance_monitor.erl: 性能监控 - -## 功能特性 - -### 1. 基础游戏功能 -- 完整的斗地主规则实现 -- 多人游戏支持 -- 房间管理系统 -- 积分系统 - -### 2. AI系统 -#### 2.1 深度学习功能 -- 多层神经网络 -- 多种优化器(Adam, SGD) -- 实时学习能力 -- 策略适应 - -#### 2.2 AI玩家特性 -- 多种性格特征(激进、保守、平衡、自适应) -- 动态决策系统 -- 对手模式识别 -- 自适应学习 - -### 3. 系统性能 -#### 3.1 并行计算 -- 工作进程池管理 -- 负载均衡 -- 异步处理 -- 结果聚合 - -#### 3.2 性能监控 -- 实时性能指标收集 -- 自动化性能分析 -- 告警系统 -- 性能报告生成 - -### 4. 可视化分析 -- 多种图表类型支持 -- 实时数据更新 -- 多格式导出 -- 自定义显示选项 - -## 技术实现 - -### 1. 深度学习实现 -```erlang -% 示例:创建神经网络 -NetworkConfig = [64, 128, 64, 32], -{ok, Network} = deep_learning:create_network(NetworkConfig). -``` - -### 2. 并行处理 -```erlang -% 示例:并行预测 -Inputs = [Input1, Input2, Input3], -{ok, Results} = parallel_compute:parallel_predict(Inputs, Network). -``` - -### 3. 性能监控 -```erlang -% 示例:启动监控 -{ok, MonitorId} = performance_monitor:start_monitoring(Network). -``` - -## 系统要求 - -- Erlang/OTP 21+ -- 支持并行计算的多核系统 -- 足够的内存支持深度学习运算 -- 图形库支持(用于可视化) - -## 性能指标 - -- 支持同时运行多个游戏房间 -- AI决策响应时间 < 1秒 -- 支持实时性能监控和分析 -- 可扩展到分布式系统 - -## 已实现功能列表 - -### 游戏核心功能 -- [x] 完整的斗地主规则实现 -- [x] 多玩家支持 -- [x] 房间管理 -- [x] 积分系统 - -### AI功能 -- [x] 深度学习引擎 -- [x] 多种AI性格 -- [x] 自适应学习 -- [x] 策略优化 - -### 系统功能 -- [x] 并行计算 -- [x] 性能监控 -- [x] 可视化分析 -- [x] 实时数据处理 - -## 待优化功能 - -1. 分布式系统支持 -2. 数据持久化 -3. 更多AI算法 -4. Web界面 -5. 移动端支持 -6. 安全性增强 -7. 容错机制 -8. 日志系统 - -## 使用说明 - -### 1. 启动系统 -```erlang - -% 运行测试 -ai_test:run_test(). -``` - -### 2. 创建游戏房间 -```erlang -{ok, RoomId} = room_manager:create_room("新手房", PlayerPid). -``` - -### 3. 添加AI玩家 -```erlang -{ok, AiPlayer} = advanced_ai_player:start_link("AI_Player", aggressive). -``` - -## 错误处理 - -系统实现了基本的错误处理机制: -- 游戏异常处理 -- AI系统容错 -- 并行计算错误恢复 -- 性能监控告警 - -## 维护建议 - -1. 定期检查性能监控报告 -2. 更新AI模型训练数据 -3. 优化并行计算配置 -4. 备份系统数据 diff --git a/src/xx.erl1 b/src/xx.erl1 index 4055f6c..9a8c19e 100644 --- a/src/xx.erl1 +++ b/src/xx.erl1 @@ -1,658 +1,658 @@ --module(xx). +-module(ai_core). -export([ - init/1, - make_decision/2, - evaluate_hand/1, - predict_plays/2, - update_knowledge/2, - calculate_win_rate/1 + init/1, + make_decision/2, + evaluate_hand/1, + predict_plays/2, + update_knowledge/2, + calculate_win_rate/1 ]). -include("card_types.hrl"). --import(game_logic, [validate_play/2, analyze_card_pattern/1, calculate_card_value/1, evaluate_hand_strength/1,find_singles/1]). +-import(game_logic, [validate_play/2, analyze_card_pattern/1, calculate_card_value/1, evaluate_hand_strength/1, find_singles/1]). -record(ai_state, { - role, % dizhu | nongmin - hand_cards = [], % 当前手牌 - known_cards = [], % 已知的牌 - played_cards = [], % 已打出的牌 - player_history = [], % 玩家出牌历史 - game_stage, % early_game | mid_game | end_game - strategy_cache = #{} % 策略缓存 + role, % dizhu | nongmin + hand_cards = [], % 当前手牌 + known_cards = [], % 已知的牌 + played_cards = [], % 已打出的牌 + player_history = [], % 玩家出牌历史 + game_stage, % early_game | mid_game | end_game + strategy_cache = #{} % 策略缓存 }). -record(play_context, { - last_play, % 上一手牌 - cards_remaining, % 剩余手牌数 - num_greater_cards, % 比上家大的牌数量 - control_factor, % 控制因子 - must_play = false % 是否必须出牌 + last_play, % 上一手牌 + cards_remaining, % 剩余手牌数 + num_greater_cards, % 比上家大的牌数量 + control_factor, % 控制因子 + must_play = false % 是否必须出牌 }). %% 初始化AI状态 init(Role) -> - #ai_state{ - role = Role, - game_stage = early_game - }. + #ai_state{ + role = Role, + game_stage = early_game + }. %% 做出决策 make_decision(AIState, GameState) -> - Context = analyze_context(AIState, GameState), - case should_play(Context, AIState) of - true -> - select_best_play(Context, AIState); - false -> - {pass, AIState} - end. + Context = analyze_context(AIState, GameState), + case should_play(Context, AIState) of + true -> + select_best_play(Context, AIState); + false -> + {pass, AIState} + end. %% 评估手牌 evaluate_hand(Cards) -> - Components = analyze_components(Cards), - calculate_hand_value(Components). + Components = analyze_components(Cards), + calculate_hand_value(Components). %% 预测可能的出牌 predict_plays(Cards, LastPlay) -> - ValidPlays = generate_valid_plays(Cards, LastPlay), - score_potential_plays(ValidPlays, LastPlay). + ValidPlays = generate_valid_plays(Cards, LastPlay), + score_potential_plays(ValidPlays, LastPlay). %% 更新知识库 update_knowledge(AIState, Event) -> - update_state_with_event(AIState, Event). + update_state_with_event(AIState, Event). %% 计算胜率 calculate_win_rate(AIState) -> - HandStrength = evaluate_hand(AIState#ai_state.hand_cards), - PositionValue = evaluate_position(AIState), - ControlValue = evaluate_control(AIState), + HandStrength = evaluate_hand(AIState#ai_state.hand_cards), + PositionValue = evaluate_position(AIState), + ControlValue = evaluate_control(AIState), - calculate_probability(HandStrength, PositionValue, ControlValue). + calculate_probability(HandStrength, PositionValue, ControlValue). %% 内部函数 %% 分析上下文 analyze_context(AIState, GameState) -> - LastPlay = get_last_play(GameState), - CardsRemaining = length(AIState#ai_state.hand_cards), - GreaterCards = count_greater_cards(AIState#ai_state.hand_cards, LastPlay), - ControlFactor = calculate_control_factor(AIState, GameState), - - #play_context{ - last_play = LastPlay, - cards_remaining = CardsRemaining, - num_greater_cards = GreaterCards, - control_factor = ControlFactor, - must_play = must_play(AIState, GameState) - }. + LastPlay = get_last_play(GameState), + CardsRemaining = length(AIState#ai_state.hand_cards), + GreaterCards = count_greater_cards(AIState#ai_state.hand_cards, LastPlay), + ControlFactor = calculate_control_factor(AIState, GameState), + + #play_context{ + last_play = LastPlay, + cards_remaining = CardsRemaining, + num_greater_cards = GreaterCards, + control_factor = ControlFactor, + must_play = must_play(AIState, GameState) + }. %% 判断是否应该出牌 should_play(Context, AIState) -> - case Context#play_context.must_play of - true -> true; - false -> - case Context#play_context.last_play of - none -> true; - _ -> - should_beat_last_play(Context, AIState) - end - end. + case Context#play_context.must_play of + true -> true; + false -> + case Context#play_context.last_play of + none -> true; + _ -> + should_beat_last_play(Context, AIState) + end + end. %% 选择最佳出牌 select_best_play(Context, AIState) -> - Candidates = generate_candidates(AIState#ai_state.hand_cards, Context), - ScoredPlays = [ - {score_play(Play, Context, AIState), Play} - || Play <- Candidates - ], - select_highest_scored_play(ScoredPlays, AIState). + Candidates = generate_candidates(AIState#ai_state.hand_cards, Context), + ScoredPlays = [ + {score_play(Play, Context, AIState), Play} + || Play <- Candidates + ], + select_highest_scored_play(ScoredPlays, AIState). %% 分析牌型组件 analyze_components(Cards) -> - GroupedCards = group_cards_by_value(Cards), - #{ - singles => find_singles(GroupedCards), - pairs => find_pairs(GroupedCards), - triples => find_triples(GroupedCards), - sequences => find_sequences(GroupedCards), - bombs => find_bombs(GroupedCards) - }. + GroupedCards = group_cards_by_value(Cards), + #{ + singles => find_singles(GroupedCards), + pairs => find_pairs(GroupedCards), + triples => find_triples(GroupedCards), + sequences => find_sequences(GroupedCards), + bombs => find_bombs(GroupedCards) + }. %% 计算手牌价值 calculate_hand_value(Components) -> - SinglesValue = calculate_singles_value(maps:get(singles, Components, [])), - PairsValue = calculate_pairs_value(maps:get(pairs, Components, [])), - TriplesValue = calculate_triples_value(maps:get(triples, Components, [])), - SequencesValue = calculate_sequences_value(maps:get(sequences, Components, [])), - BombsValue = calculate_bombs_value(maps:get(bombs, Components, [])), + SinglesValue = calculate_singles_value(maps:get(singles, Components, [])), + PairsValue = calculate_pairs_value(maps:get(pairs, Components, [])), + TriplesValue = calculate_triples_value(maps:get(triples, Components, [])), + SequencesValue = calculate_sequences_value(maps:get(sequences, Components, [])), + BombsValue = calculate_bombs_value(maps:get(bombs, Components, [])), - SinglesValue + PairsValue + TriplesValue + SequencesValue + BombsValue. + SinglesValue + PairsValue + TriplesValue + SequencesValue + BombsValue. %% 生成有效出牌选择 generate_valid_plays(Cards, LastPlay) -> - case LastPlay of - none -> - generate_leading_plays(Cards); - Play -> - generate_following_plays(Cards, Play) - end. + case LastPlay of + none -> + generate_leading_plays(Cards); + Play -> + generate_following_plays(Cards, Play) + end. %% 评分潜在出牌 score_potential_plays(Plays, LastPlay) -> - [{Play, score_play_potential(Play, LastPlay)} || Play <- Plays]. + [{Play, score_play_potential(Play, LastPlay)} || Play <- Plays]. %% 更新状态 update_state_with_event(AIState, {play_cards, Player, Cards}) -> - NewPlayed = AIState#ai_state.played_cards ++ Cards, - NewHistory = [{Player, Cards} | AIState#ai_state.player_history], - AIState#ai_state{ - played_cards = NewPlayed, - player_history = NewHistory - }; + NewPlayed = AIState#ai_state.played_cards ++ Cards, + NewHistory = [{Player, Cards} | AIState#ai_state.player_history], + AIState#ai_state{ + played_cards = NewPlayed, + player_history = NewHistory + }; update_state_with_event(AIState, {game_stage, NewStage}) -> - AIState#ai_state{game_stage = NewStage}; + AIState#ai_state{game_stage = NewStage}; update_state_with_event(AIState, _) -> - AIState. + AIState. %% 计算胜率概率 calculate_probability(HandStrength, PositionValue, ControlValue) -> - BaseProb = HandStrength * 0.5 + PositionValue * 0.3 + ControlValue * 0.2, - normalize_probability(BaseProb). + BaseProb = HandStrength * 0.5 + PositionValue * 0.3 + ControlValue * 0.2, + normalize_probability(BaseProb). %% 计算控制因子 calculate_control_factor(AIState, GameState) -> - ControlCards = count_control_cards(AIState#ai_state.hand_cards), - TotalCards = count_total_remaining_cards(GameState), - RemainingCards = length(AIState#ai_state.hand_cards), + ControlCards = count_control_cards(AIState#ai_state.hand_cards), + TotalCards = count_total_remaining_cards(GameState), + RemainingCards = length(AIState#ai_state.hand_cards), - ControlRatio = ControlCards / max(1, RemainingCards), - PositionBonus = calculate_position_bonus(AIState, GameState), + ControlRatio = ControlCards / max(1, RemainingCards), + PositionBonus = calculate_position_bonus(AIState, GameState), - ControlRatio * PositionBonus. + ControlRatio * PositionBonus. %% 判断是否必须出牌 must_play(AIState, GameState) -> - is_current_player(AIState, GameState) andalso - not has_active_play(GameState). + is_current_player(AIState, GameState) andalso + not has_active_play(GameState). %% 评估是否应该大过上家 should_beat_last_play(Context, AIState) -> - case Context#play_context.last_play of - none -> true; - LastPlay -> - HandStrength = evaluate_hand(AIState#ai_state.hand_cards), - ControlLevel = Context#play_context.control_factor, - CardsLeft = Context#play_context.cards_remaining, + case Context#play_context.last_play of + none -> true; + LastPlay -> + HandStrength = evaluate_hand(AIState#ai_state.hand_cards), + ControlLevel = Context#play_context.control_factor, + CardsLeft = Context#play_context.cards_remaining, - should_beat(HandStrength, ControlLevel, CardsLeft, LastPlay) - end. + should_beat(HandStrength, ControlLevel, CardsLeft, LastPlay) + end. %% 生成候选出牌 generate_candidates(Cards, Context) -> - BasePlays = case Context#play_context.last_play of - none -> generate_leading_plays(Cards); - LastPlay -> generate_following_plays(Cards, LastPlay) - end, + BasePlays = case Context#play_context.last_play of + none -> generate_leading_plays(Cards); + LastPlay -> generate_following_plays(Cards, LastPlay) + end, - filter_candidates(BasePlays, Context). + filter_candidates(BasePlays, Context). %% 对出牌进行评分 score_play(Play, Context, AIState) -> - BaseScore = calculate_base_score(Play), - TempoScore = calculate_tempo_score(Play, Context), - ControlScore = calculate_control_score(Play, Context, AIState), - EfficiencyScore = calculate_efficiency_score(Play, Context), + BaseScore = calculate_base_score(Play), + TempoScore = calculate_tempo_score(Play, Context), + ControlScore = calculate_control_score(Play, Context, AIState), + EfficiencyScore = calculate_efficiency_score(Play, Context), - FinalScore = BaseScore * 0.4 + - TempoScore * 0.2 + - ControlScore * 0.3 + - EfficiencyScore * 0.1, + FinalScore = BaseScore * 0.4 + + TempoScore * 0.2 + + ControlScore * 0.3 + + EfficiencyScore * 0.1, - adjust_score_for_context(FinalScore, Play, Context, AIState). + adjust_score_for_context(FinalScore, Play, Context, AIState). %% 选择得分最高的出牌 select_highest_scored_play(ScoredPlays, AIState) -> - case lists:sort(fun({Score1, _}, {Score2, _}) -> - Score1 >= Score2 - end, ScoredPlays) of - [{Score, Play}|_] when Score > 0 -> - {play, Play, update_after_play(Play, AIState)}; - _ -> - {pass, AIState} - end. + case lists:sort(fun({Score1, _}, {Score2, _}) -> + Score1 >= Score2 + end, ScoredPlays) of + [{Score, Play}|_] when Score > 0 -> + {play, Play, update_after_play(Play, AIState)}; + _ -> + {pass, AIState} + end. %% 计算单牌价值 calculate_singles_value(Singles) -> - lists:sum([ - case Value of - V when V >= ?CARD_2 -> Value * 1.5; - _ -> Value - end || {Value, _} <- Singles - ]). + lists:sum([ + case Value of + V when V >= ?CARD_VALUE_2 -> Value * 1.5; + _ -> Value + end || {Value, _} <- Singles + ]). %% 计算对子价值 calculate_pairs_value(Pairs) -> - lists:sum([Value * 2.2 || {Value, _} <- Pairs]). + lists:sum([Value * 2.2 || {Value, _} <- Pairs]). %% 计算三张价值 calculate_triples_value(Triples) -> - lists:sum([Value * 3.5 || {Value, _} <- Triples]). + lists:sum([Value * 3.5 || {Value, _} <- Triples]). %% 计算顺子价值 calculate_sequences_value(Sequences) -> - lists:sum([ - Value * length(Cards) * 1.8 - || {Value, Cards} <- Sequences - ]). + lists:sum([ + Value * length(Cards) * 1.8 + || {Value, Cards} <- Sequences + ]). %% 计算炸弹价值 calculate_bombs_value(Bombs) -> - lists:sum([Value * 10.0 || {Value, _} <- Bombs]). + lists:sum([Value * 10.0 || {Value, _} <- Bombs]). %% 生成首出牌型 generate_leading_plays(Cards) -> - Components = analyze_components(Cards), - Singles = generate_single_plays(Components), - Pairs = generate_pair_plays(Components), - Triples = generate_triple_plays(Components), - Sequences = generate_sequence_plays(Components), - Bombs = generate_bomb_plays(Components), + Components = analyze_components(Cards), + Singles = generate_single_plays(Components), + Pairs = generate_pair_plays(Components), + Triples = generate_triple_plays(Components), + Sequences = generate_sequence_plays(Components), + Bombs = generate_bomb_plays(Components), - Singles ++ Pairs ++ Triples ++ Sequences ++ Bombs. + Singles ++ Pairs ++ Triples ++ Sequences ++ Bombs. %% 生成跟牌选择 generate_following_plays(Cards, {Type, Value, _} = LastPlay) -> - ValidPlays = find_greater_plays(Cards, Type, Value), - BombPlays = find_bomb_plays(Cards), - RocketPlay = find_rocket_play(Cards), + ValidPlays = find_greater_plays(Cards, Type, Value), + BombPlays = find_bomb_plays(Cards), + RocketPlay = find_rocket_play(Cards), - ValidPlays ++ BombPlays ++ RocketPlay. + ValidPlays ++ BombPlays ++ RocketPlay. %% 计算基础分数 calculate_base_score({Type, Value, Cards}) -> - BaseValue = Value * length(Cards), - TypeMultiplier = case Type of - ?CARD_TYPE_ROCKET -> 100.0; - ?CARD_TYPE_BOMB -> 80.0; - ?CARD_TYPE_STRAIGHT -> 40.0; - ?CARD_TYPE_STRAIGHT_PAIR -> 35.0; - ?CARD_TYPE_PLANE -> 30.0; - ?CARD_TYPE_THREE_TWO -> 25.0; - ?CARD_TYPE_THREE_ONE -> 20.0; - ?CARD_TYPE_THREE -> 15.0; - ?CARD_TYPE_PAIR -> 10.0; - ?CARD_TYPE_SINGLE -> 5.0 - end, - BaseValue * TypeMultiplier / 100.0. + BaseValue = Value * length(Cards), + TypeMultiplier = case Type of + ?CARD_TYPE_ROCKET -> 100.0; + ?CARD_TYPE_BOMB -> 80.0; + ?CARD_TYPE_STRAIGHT -> 40.0; + ?CARD_TYPE_STRAIGHT_PAIR -> 35.0; + ?CARD_TYPE_PLANE -> 30.0; + ?CARD_TYPE_THREE_TWO -> 25.0; + ?CARD_TYPE_THREE_ONE -> 20.0; + ?CARD_TYPE_THREE -> 15.0; + ?CARD_TYPE_PAIR -> 10.0; + ?CARD_TYPE_SINGLE -> 5.0 + end, + BaseValue * TypeMultiplier / 100.0. %% 计算节奏分数 calculate_tempo_score(Play, Context) -> - case Context#play_context.game_stage of - early_game -> calculate_early_tempo(Play, Context); - mid_game -> calculate_mid_tempo(Play, Context); - end_game -> calculate_end_tempo(Play, Context) - end. + case Context#play_context.game_stage of + early_game -> calculate_early_tempo(Play, Context); + mid_game -> calculate_mid_tempo(Play, Context); + end_game -> calculate_end_tempo(Play, Context) + end. %% 计算控制分数 calculate_control_score(Play, Context, AIState) -> - {Type, Value, _} = Play, - BaseControl = case Type of - ?CARD_TYPE_BOMB -> 1.0; - ?CARD_TYPE_ROCKET -> 1.0; - _ when Value >= ?CARD_2 -> 0.8; - _ -> 0.5 - end, - BaseControl * Context#play_context.control_factor. + {Type, Value, _} = Play, + BaseControl = case Type of + ?CARD_TYPE_BOMB -> 1.0; + ?CARD_TYPE_ROCKET -> 1.0; + _ when Value >= ?CARD_VALUE_2 -> 0.8; + _ -> 0.5 + end, + BaseControl * Context#play_context.control_factor. %% 计算效率分数 calculate_efficiency_score(Play, Context) -> - {_, _, Cards} = Play, - CardsUsed = length(Cards), - RemainingCards = Context#play_context.cards_remaining - CardsUsed, - Efficiency = CardsUsed / max(1, Context#play_context.cards_remaining), - Efficiency * (1 + (20 - RemainingCards) / 20). + {_, _, Cards} = Play, + CardsUsed = length(Cards), + RemainingCards = Context#play_context.cards_remaining - CardsUsed, + Efficiency = CardsUsed / max(1, Context#play_context.cards_remaining), + Efficiency * (1 + (20 - RemainingCards) / 20). %% 根据上下文调整分数 adjust_score_for_context(Score, Play, Context, AIState) -> - RoleMultiplier = case AIState#ai_state.role of - dizhu -> 1.2; - nongmin -> 1.0 - end, + RoleMultiplier = case AIState#ai_state.role of + dizhu -> 1.2; + nongmin -> 1.0 + end, - StageMultiplier = case Context#play_context.game_stage of - early_game -> 0.9; - mid_game -> 1.0; - end_game -> 1.1 - end, + StageMultiplier = case Context#play_context.game_stage of + early_game -> 0.9; + mid_game -> 1.0; + end_game -> 1.1 + end, - Score * RoleMultiplier * StageMultiplier. + Score * RoleMultiplier * StageMultiplier. %% 更新出牌后的状态 update_after_play(Play, AIState) -> - {_, _, Cards} = Play, - NewHand = AIState#ai_state.hand_cards -- Cards, - NewPlayed = AIState#ai_state.played_cards ++ Cards, + {_, _, Cards} = Play, + NewHand = AIState#ai_state.hand_cards -- Cards, + NewPlayed = AIState#ai_state.played_cards ++ Cards, - AIState#ai_state{ - hand_cards = NewHand, - played_cards = NewPlayed - }. + AIState#ai_state{ + hand_cards = NewHand, + played_cards = NewPlayed + }. %% 辅助函数 normalize_probability(P) -> - max(0.0, min(1.0, P)). + max(0.0, min(1.0, P)). count_control_cards(Cards) -> - length([C || {V, _} = C <- Cards, V >= ?CARD_2]). + length([C || {V, _} = C <- Cards, V >= ?CARD_VALUE_2]). calculate_position_bonus(AIState, GameState) -> - case get_position(AIState, GameState) of - first -> 1.2; - middle -> 1.0; - last -> 0.8 - end. + case get_position(AIState, GameState) of + first -> 1.2; + middle -> 1.0; + last -> 0.8 + end. get_position(AIState, GameState) -> - % 根据游戏状态判断位置 - first. % 简化实现,实际需要根据具体游戏状态判断 + % 根据游戏状态判断位置 + first. % 简化实现,实际需要根据具体游戏状态判断 is_current_player(AIState, GameState) -> - % 判断是否当前玩家 - true. % 简化实现,实际需要根据具体游戏状态判断 + % 判断是否当前玩家 + true. % 简化实现,实际需要根据具体游戏状态判断 has_active_play(GameState) -> - % 判断是否有活跃的出牌 - false. % 简化实现,实际需要根据具体游戏状态判断 + % 判断是否有活跃的出牌 + false. % 简化实现,实际需要根据具体游戏状态判断 should_beat(HandStrength, ControlLevel, CardsLeft, LastPlay) -> - BaseThreshold = 0.6, - StrengthFactor = HandStrength / 100, - ControlFactor = ControlLevel / 100, - CardsFactor = (20 - CardsLeft) / 20, + BaseThreshold = 0.6, + StrengthFactor = HandStrength / 100, + ControlFactor = ControlLevel / 100, + CardsFactor = (20 - CardsLeft) / 20, - PlayThreshold = BaseThreshold * (StrengthFactor + ControlFactor + CardsFactor) / 3, - evaluate_play_value(LastPlay) < PlayThreshold. + PlayThreshold = BaseThreshold * (StrengthFactor + ControlFactor + CardsFactor) / 3, + evaluate_play_value(LastPlay) < PlayThreshold. evaluate_play_value({Type, Value, Cards}) -> - BaseValue = case Type of - ?CARD_TYPE_ROCKET -> 1.0; - ?CARD_TYPE_BOMB -> 0.9; - ?CARD_TYPE_PLANE -> 0.7; - ?CARD_TYPE_STRAIGHT -> 0.6; - ?CARD_TYPE_STRAIGHT_PAIR -> 0.5; - ?CARD_TYPE_THREE_TWO -> 0.4; - ?CARD_TYPE_THREE_ONE -> 0.3; - ?CARD_TYPE_THREE -> 0.25; - ?CARD_TYPE_PAIR -> 0.2; - ?CARD_TYPE_SINGLE -> 0.1 - end, - - ValueBonus = Value / ?CARD_JOKER_BIG, - CardCountFactor = length(Cards) / 10, - - BaseValue * (1 + ValueBonus) * (1 + CardCountFactor). + BaseValue = case Type of + ?CARD_TYPE_ROCKET -> 1.0; + ?CARD_TYPE_BOMB -> 0.9; + ?CARD_TYPE_PLANE -> 0.7; + ?CARD_TYPE_STRAIGHT -> 0.6; + ?CARD_TYPE_STRAIGHT_PAIR -> 0.5; + ?CARD_TYPE_THREE_TWO -> 0.4; + ?CARD_TYPE_THREE_ONE -> 0.3; + ?CARD_TYPE_THREE -> 0.25; + ?CARD_TYPE_PAIR -> 0.2; + ?CARD_TYPE_SINGLE -> 0.1 + end, + + ValueBonus = Value / ?CARD_VALUE_BIG_JOKER, + CardCountFactor = length(Cards) / 10, + + BaseValue * (1 + ValueBonus) * (1 + CardCountFactor). %% 牌型生成函数 generate_single_plays(Components) -> - [{?CARD_TYPE_SINGLE, Value, [Card]} || - {Value, Card} <- maps:get(singles, Components, [])]. + [{?CARD_TYPE_SINGLE, Value, [Card]} || + {Value, Card} <- maps:get(singles, Components, [])]. generate_pair_plays(Components) -> - [{?CARD_TYPE_PAIR, Value, Cards} || - {Value, Cards} <- maps:get(pairs, Components, [])]. + [{?CARD_TYPE_PAIR, Value, Cards} || + {Value, Cards} <- maps:get(pairs, Components, [])]. generate_triple_plays(Components) -> - Triples = maps:get(triples, Components, []), - BasicTriples = [{?CARD_TYPE_THREE, Value, Cards} || - {Value, Cards} <- Triples], - % 生成三带一和三带二 - generate_triple_combinations(Triples, Components). + Triples = maps:get(triples, Components, []), + BasicTriples = [{?CARD_TYPE_THREE, Value, Cards} || + {Value, Cards} <- Triples], + % 生成三带一和三带二 + generate_triple_combinations(Triples, Components). generate_sequence_plays(Components) -> - Sequences = maps:get(sequences, Components, []), - [{?CARD_TYPE_STRAIGHT, Value, Cards} || - {Value, Cards} <- Sequences]. + Sequences = maps:get(sequences, Components, []), + [{?CARD_TYPE_STRAIGHT, Value, Cards} || + {Value, Cards} <- Sequences]. generate_bomb_plays(Components) -> - [{?CARD_TYPE_BOMB, Value, Cards} || - {Value, Cards} <- maps:get(bombs, Components, [])]. + [{?CARD_TYPE_BOMB, Value, Cards} || + {Value, Cards} <- maps:get(bombs, Components, [])]. generate_triple_combinations(Triples, Components) -> - Singles = maps:get(singles, Components, []), - Pairs = maps:get(pairs, Components, []), + Singles = maps:get(singles, Components, []), + Pairs = maps:get(pairs, Components, []), - ThreeOne = generate_three_one(Triples, Singles), - ThreeTwo = generate_three_two(Triples, Pairs), + ThreeOne = generate_three_one(Triples, Singles), + ThreeTwo = generate_three_two(Triples, Pairs), - ThreeOne ++ ThreeTwo. + ThreeOne ++ ThreeTwo. generate_three_one(Triples, Singles) -> - [{?CARD_TYPE_THREE_ONE, TripleValue, TripleCards ++ [SingleCard]} || - {TripleValue, TripleCards} <- Triples, - {SingleValue, SingleCard} <- Singles, - SingleValue =/= TripleValue]. + [{?CARD_TYPE_THREE_ONE, TripleValue, TripleCards ++ [SingleCard]} || + {TripleValue, TripleCards} <- Triples, + {SingleValue, SingleCard} <- Singles, + SingleValue =/= TripleValue]. generate_three_two(Triples, Pairs) -> - [{?CARD_TYPE_THREE_TWO, TripleValue, TripleCards ++ PairCards} || - {TripleValue, TripleCards} <- Triples, - {PairValue, PairCards} <- Pairs, - PairValue =/= TripleValue]. + [{?CARD_TYPE_THREE_TWO, TripleValue, TripleCards ++ PairCards} || + {TripleValue, TripleCards} <- Triples, + {PairValue, PairCards} <- Pairs, + PairValue =/= TripleValue]. %% 查找特定牌型 find_greater_plays(Cards, Type, MinValue) -> - Components = analyze_components(Cards), - case Type of - ?CARD_TYPE_SINGLE -> - find_greater_singles(Components, MinValue); - ?CARD_TYPE_PAIR -> - find_greater_pairs(Components, MinValue); - ?CARD_TYPE_THREE -> - find_greater_triples(Components, MinValue); - ?CARD_TYPE_THREE_ONE -> - find_greater_three_one(Components, MinValue); - ?CARD_TYPE_THREE_TWO -> - find_greater_three_two(Components, MinValue); - ?CARD_TYPE_STRAIGHT -> - find_greater_straight(Components, MinValue); - ?CARD_TYPE_STRAIGHT_PAIR -> - find_greater_straight_pair(Components, MinValue); - ?CARD_TYPE_PLANE -> - find_greater_plane(Components, MinValue); - ?CARD_TYPE_BOMB -> - find_greater_bomb(Components, MinValue); - _ -> [] - end. + Components = analyze_components(Cards), + case Type of + ?CARD_TYPE_SINGLE -> + find_greater_singles(Components, MinValue); + ?CARD_TYPE_PAIR -> + find_greater_pairs(Components, MinValue); + ?CARD_TYPE_THREE -> + find_greater_triples(Components, MinValue); + ?CARD_TYPE_THREE_ONE -> + find_greater_three_one(Components, MinValue); + ?CARD_TYPE_THREE_TWO -> + find_greater_three_two(Components, MinValue); + ?CARD_TYPE_STRAIGHT -> + find_greater_straight(Components, MinValue); + ?CARD_TYPE_STRAIGHT_PAIR -> + find_greater_straight_pair(Components, MinValue); + ?CARD_TYPE_PLANE -> + find_greater_plane(Components, MinValue); + ?CARD_TYPE_BOMB -> + find_greater_bomb(Components, MinValue); + _ -> [] + end. find_greater_singles(Components, MinValue) -> - [{?CARD_TYPE_SINGLE, Value, [Card]} || - {Value, Card} <- maps:get(singles, Components, []), - Value > MinValue]. + [{?CARD_TYPE_SINGLE, Value, [Card]} || + {Value, Card} <- maps:get(singles, Components, []), + Value > MinValue]. find_greater_pairs(Components, MinValue) -> - [{?CARD_TYPE_PAIR, Value, Cards} || - {Value, Cards} <- maps:get(pairs, Components, []), - Value > MinValue]. + [{?CARD_TYPE_PAIR, Value, Cards} || + {Value, Cards} <- maps:get(pairs, Components, []), + Value > MinValue]. find_greater_triples(Components, MinValue) -> - [{?CARD_TYPE_THREE, Value, Cards} || - {Value, Cards} <- maps:get(triples, Components, []), - Value > MinValue]. + [{?CARD_TYPE_THREE, Value, Cards} || + {Value, Cards} <- maps:get(triples, Components, []), + Value > MinValue]. find_greater_three_one(Components, MinValue) -> - Triples = [{V, C} || {V, C} <- maps:get(triples, Components, []), - V > MinValue], - Singles = maps:get(singles, Components, []), - generate_three_one(Triples, Singles). + Triples = [{V, C} || {V, C} <- maps:get(triples, Components, []), + V > MinValue], + Singles = maps:get(singles, Components, []), + generate_three_one(Triples, Singles). find_greater_three_two(Components, MinValue) -> - Triples = [{V, C} || {V, C} <- maps:get(triples, Components, []), - V > MinValue], - Pairs = maps:get(pairs, Components, []), - generate_three_two(Triples, Pairs). + Triples = [{V, C} || {V, C} <- maps:get(triples, Components, []), + V > MinValue], + Pairs = maps:get(pairs, Components, []), + generate_three_two(Triples, Pairs). find_greater_straight(Components, MinValue) -> - Sequences = maps:get(sequences, Components, []), - [{?CARD_TYPE_STRAIGHT, Value, Cards} || - {Value, Cards} <- Sequences, - Value > MinValue]. + Sequences = maps:get(sequences, Components, []), + [{?CARD_TYPE_STRAIGHT, Value, Cards} || + {Value, Cards} <- Sequences, + Value > MinValue]. find_greater_straight_pair(Components, MinValue) -> - Sequences = find_pair_sequences(Components), - [{?CARD_TYPE_STRAIGHT_PAIR, Value, Cards} || - {Value, Cards} <- Sequences, - Value > MinValue]. + Sequences = find_pair_sequences(Components), + [{?CARD_TYPE_STRAIGHT_PAIR, Value, Cards} || + {Value, Cards} <- Sequences, + Value > MinValue]. find_greater_plane(Components, MinValue) -> - Planes = find_planes(Components), - [{?CARD_TYPE_PLANE, Value, Cards} || - {Value, Cards} <- Planes, - Value > MinValue]. + Planes = find_planes(Components), + [{?CARD_TYPE_PLANE, Value, Cards} || + {Value, Cards} <- Planes, + Value > MinValue]. find_greater_bomb(Components, MinValue) -> - [{?CARD_TYPE_BOMB, Value, Cards} || - {Value, Cards} <- maps:get(bombs, Components, []), - Value > MinValue]. + [{?CARD_TYPE_BOMB, Value, Cards} || + {Value, Cards} <- maps:get(bombs, Components, []), + Value > MinValue]. find_bomb_plays(Cards) -> - Components = analyze_components(Cards), - [{?CARD_TYPE_BOMB, Value, Cards} || - {Value, Cards} <- maps:get(bombs, Components, [])]. + Components = analyze_components(Cards), + [{?CARD_TYPE_BOMB, Value, Cards} || + {Value, Cards} <- maps:get(bombs, Components, [])]. find_rocket_play(Cards) -> - Components = analyze_components(Cards), - case find_rocket(Components) of - {ok, Rocket} -> [Rocket]; - _ -> [] - end. + Components = analyze_components(Cards), + case find_rocket(Components) of + {ok, Rocket} -> [Rocket]; + _ -> [] + end. find_rocket(Components) -> - case {find_card(?CARD_JOKER_SMALL, Components), - find_card(?CARD_JOKER_BIG, Components)} of - {{ok, Small}, {ok, Big}} -> - {ok, {?CARD_TYPE_ROCKET, ?CARD_JOKER_BIG, [Small, Big]}}; - _ -> - false - end. + case {find_card(?CARD_VALUE_SMALL_JOKER, Components), + find_card(?CARD_VALUE_BIG_JOKER, Components)} of + {{ok, Small}, {ok, Big}} -> + {ok, {?CARD_TYPE_ROCKET, ?CARD_VALUE_BIG_JOKER, [Small, Big]}}; + _ -> + false + end. find_card(Value, Components) -> - Singles = maps:get(singles, Components, []), - case lists:keyfind(Value, 1, Singles) of - {Value, Card} -> {ok, Card}; - _ -> false - end. + Singles = maps:get(singles, Components, []), + case lists:keyfind(Value, 1, Singles) of + {Value, Card} -> {ok, Card}; + _ -> false + end. find_pair_sequences(Components) -> - Pairs = maps:get(pairs, Components, []), - find_consecutive_pairs(lists:sort(Pairs), []). + Pairs = maps:get(pairs, Components, []), + find_consecutive_pairs(lists:sort(Pairs), []). find_planes(Components) -> - Triples = maps:get(triples, Components, []), - find_consecutive_triples(lists:sort(Triples), []). + Triples = maps:get(triples, Components, []), + find_consecutive_triples(lists:sort(Triples), []). find_consecutive_pairs([], Acc) -> lists:reverse(Acc); find_consecutive_pairs([{V1, Cards1} | Rest], Acc) -> - case find_consecutive_pair_sequence(V1, Cards1, Rest) of - {Sequence, NewRest} when length(Sequence) >= 3 -> - find_consecutive_pairs(NewRest, [{V1, Sequence} | Acc]); - _ -> - find_consecutive_pairs(Rest, Acc) - end. + case find_consecutive_pair_sequence(V1, Cards1, Rest) of + {Sequence, NewRest} when length(Sequence) >= 3 -> + find_consecutive_pairs(NewRest, [{V1, Sequence} | Acc]); + _ -> + find_consecutive_pairs(Rest, Acc) + end. find_consecutive_pair_sequence(Value, Cards, Rest) -> - find_consecutive_pair_sequence(Value, Cards, Rest, [Cards]). + find_consecutive_pair_sequence(Value, Cards, Rest, [Cards]). find_consecutive_pair_sequence(Value, _, [], Acc) -> - {lists:flatten(lists:reverse(Acc)), []}; + {lists:flatten(lists:reverse(Acc)), []}; find_consecutive_pair_sequence(Value, _, [{NextValue, NextCards} | Rest], Acc) - when NextValue =:= Value + 1 -> - find_consecutive_pair_sequence(NextValue, NextCards, Rest, [NextCards | Acc]); + when NextValue =:= Value + 1 -> + find_consecutive_pair_sequence(NextValue, NextCards, Rest, [NextCards | Acc]); find_consecutive_pair_sequence(_, _, Rest, Acc) -> - {lists:flatten(lists:reverse(Acc)), Rest}. + {lists:flatten(lists:reverse(Acc)), Rest}. find_consecutive_triples([], Acc) -> lists:reverse(Acc); find_consecutive_triples([{V1, Cards1} | Rest], Acc) -> - case find_consecutive_triple_sequence(V1, Cards1, Rest) of - {Sequence, NewRest} when length(Sequence) >= 6 -> - find_consecutive_triples(NewRest, [{V1, Sequence} | Acc]); - _ -> - find_consecutive_triples(Rest, Acc) - end. + case find_consecutive_triple_sequence(V1, Cards1, Rest) of + {Sequence, NewRest} when length(Sequence) >= 6 -> + find_consecutive_triples(NewRest, [{V1, Sequence} | Acc]); + _ -> + find_consecutive_triples(Rest, Acc) + end. find_consecutive_triple_sequence(Value, Cards, Rest) -> - find_consecutive_triple_sequence(Value, Cards, Rest, [Cards]). + find_consecutive_triple_sequence(Value, Cards, Rest, [Cards]). find_consecutive_triple_sequence(Value, _, [], Acc) -> - {lists:flatten(lists:reverse(Acc)), []}; + {lists:flatten(lists:reverse(Acc)), []}; find_consecutive_triple_sequence(Value, _, [{NextValue, NextCards} | Rest], Acc) - when NextValue =:= Value + 1 -> - find_consecutive_triple_sequence(NextValue, NextCards, Rest, [NextCards | Acc]); + when NextValue =:= Value + 1 -> + find_consecutive_triple_sequence(NextValue, NextCards, Rest, [NextCards | Acc]); find_consecutive_triple_sequence(_, _, Rest, Acc) -> - {lists:flatten(lists:reverse(Acc)), Rest}. + {lists:flatten(lists:reverse(Acc)), Rest}. %% 计算早期、中期和末期的节奏分数 calculate_early_tempo({Type, Value, _}, _Context) -> - case Type of - ?CARD_TYPE_SINGLE when Value < ?CARD_2 -> 0.8; - ?CARD_TYPE_PAIR when Value < ?CARD_2 -> 0.7; - ?CARD_TYPE_STRAIGHT -> 0.9; - ?CARD_TYPE_STRAIGHT_PAIR -> 0.85; - _ -> 0.5 - end. + case Type of + ?CARD_TYPE_SINGLE when Value < ?CARD_VALUE_2 -> 0.8; + ?CARD_TYPE_PAIR when Value < ?CARD_VALUE_2 -> 0.7; + ?CARD_TYPE_STRAIGHT -> 0.9; + ?CARD_TYPE_STRAIGHT_PAIR -> 0.85; + _ -> 0.5 + end. calculate_mid_tempo({Type, Value, _}, _Context) -> - case Type of - ?CARD_TYPE_THREE_ONE -> 0.8; - ?CARD_TYPE_THREE_TWO -> 0.85; - ?CARD_TYPE_PLANE -> 0.9; - ?CARD_TYPE_BOMB -> 0.7; - _ -> 0.6 - end. + case Type of + ?CARD_TYPE_THREE_ONE -> 0.8; + ?CARD_TYPE_THREE_TWO -> 0.85; + ?CARD_TYPE_PLANE -> 0.9; + ?CARD_TYPE_BOMB -> 0.7; + _ -> 0.6 + end. calculate_end_tempo({Type, Value, _}, Context) -> - CardsLeft = Context#play_context.cards_remaining, - case Type of - ?CARD_TYPE_BOMB -> 0.9; - ?CARD_TYPE_ROCKET -> 1.0; - _ when CardsLeft =< 4 -> 0.95; - _ -> 0.7 - end. + CardsLeft = Context#play_context.cards_remaining, + case Type of + ?CARD_TYPE_BOMB -> 0.9; + ?CARD_TYPE_ROCKET -> 1.0; + _ when CardsLeft =< 4 -> 0.95; + _ -> 0.7 + end. %% 过滤候选出牌 filter_candidates(Plays, Context) -> - case Context#play_context.game_stage of - early_game -> - filter_early_game_plays(Plays, Context); - mid_game -> - filter_mid_game_plays(Plays, Context); - end_game -> - filter_end_game_plays(Plays, Context) - end. + case Context#play_context.game_stage of + early_game -> + filter_early_game_plays(Plays, Context); + mid_game -> + filter_mid_game_plays(Plays, Context); + end_game -> + filter_end_game_plays(Plays, Context) + end. filter_early_game_plays(Plays, _Context) -> - % 早期游戏倾向于出小牌,保留炸弹 - [Play || {Type, Value, _} = Play <- Plays, - Type =/= ?CARD_TYPE_BOMB orelse Value >= ?CARD_2]. + % 早期游戏倾向于出小牌,保留炸弹 + [Play || {Type, Value, _} = Play <- Plays, + Type =/= ?CARD_TYPE_BOMB orelse Value >= ?CARD_VALUE_2]. filter_mid_game_plays(Plays, Context) -> - % 中期游戏根据局势决定是否使用炸弹 - case Context#play_context.control_factor < 0.5 of - true -> Plays; - false -> - [Play || {Type, _, _} = Play <- Plays, - Type =/= ?CARD_TYPE_BOMB] - end. + % 中期游戏根据局势决定是否使用炸弹 + case Context#play_context.control_factor < 0.5 of + true -> Plays; + false -> + [Play || {Type, _, _} = Play <- Plays, + Type =/= ?CARD_TYPE_BOMB] + end. filter_end_game_plays(Plays, _Context) -> - % 末期游戏可以使用任何牌型 - Plays. + % 末期游戏可以使用任何牌型 + Plays. %% 对手牌进行分组 group_cards_by_value(Cards) -> - lists:foldl(fun(Card, Acc) -> - {Value, _} = Card, - maps:update_with(Value, - fun(List) -> [Card|List] end, - [Card], - Acc) - end, maps:new(), Cards). \ No newline at end of file + lists:foldl(fun(Card, Acc) -> + {Value, _} = Card, + maps:update_with(Value, + fun(List) -> [Card|List] end, + [Card], + Acc) + end, maps:new(), Cards). \ No newline at end of file diff --git a/斗地主.md b/斗地主.md deleted file mode 100644 index 49e4ed1..0000000 --- a/斗地主.md +++ /dev/null @@ -1,190 +0,0 @@ -# 自动斗地主AI系统项目文档 - -**文档生成日期:** 2025-02-21 03:49:02 UTC -**作者:** SisMaker -**项目版本:** 1.0.0 - -## 项目概述 - -本项目是一个基于Erlang开发的智能斗地主游戏系统,集成了深度学习、并行计算、性能监控和可视化分析等先进功能。系统采用模块化设计,具有高可扩展性和可维护性。 - -## 系统架构 - -### 核心模块 - -1. **游戏核心模块** - - cards.erl: 牌类操作 - - card_rules.erl: 游戏规则 - - game_server.erl: 游戏服务器 - - player.erl: 玩家管理 - -2. **AI系统模块** - - deep_learning.erl: 深度学习引擎 - - advanced_ai_player.erl: 高级AI玩家 - - matrix.erl: 矩阵运算 - - optimizer.erl: 优化器 - -3. **系统支持模块** - - parallel_compute.erl: 并行计算 - - performance_monitor.erl: 性能监控 - -## 功能特性 - -### 1. 基础游戏功能 -- 完整的斗地主规则实现 -- 多人游戏支持 -- 房间管理系统 -- 积分系统 - -### 2. AI系统 -#### 2.1 深度学习功能 -- 多层神经网络 -- 多种优化器(Adam, SGD) -- 实时学习能力 -- 策略适应 - -#### 2.2 AI玩家特性 -- 多种性格特征(激进、保守、平衡、自适应) -- 动态决策系统 -- 对手模式识别 -- 自适应学习 - -### 3. 系统性能 -#### 3.1 并行计算 -- 工作进程池管理 -- 负载均衡 -- 异步处理 -- 结果聚合 - -#### 3.2 性能监控 -- 实时性能指标收集 -- 自动化性能分析 -- 告警系统 -- 性能报告生成 - -### 4. 可视化分析 -- 多种图表类型支持 -- 实时数据更新 -- 多格式导出 -- 自定义显示选项 - -## 技术实现 - -### 1. 深度学习实现 -```erlang -% 示例:创建神经网络 -NetworkConfig = [64, 128, 64, 32], -{ok, Network} = deep_learning:create_network(NetworkConfig). -``` - -### 2. 并行处理 -```erlang -% 示例:并行预测 -Inputs = [Input1, Input2, Input3], -{ok, Results} = parallel_compute:parallel_predict(Inputs, Network). -``` - -### 3. 性能监控 -```erlang -% 示例:启动监控 -{ok, MonitorId} = performance_monitor:start_monitoring(Network). -``` - -## 系统要求 - -- Erlang/OTP 21+ -- 支持并行计算的多核系统 -- 足够的内存支持深度学习运算 -- 图形库支持(用于可视化) - -## 性能指标 - -- 支持同时运行多个游戏房间 -- AI决策响应时间 < 1秒 -- 支持实时性能监控和分析 -- 可扩展到分布式系统 - -## 已实现功能列表 - -### 游戏核心功能 -- [x] 完整的斗地主规则实现 -- [x] 多玩家支持 -- [x] 房间管理 -- [x] 积分系统 - -### AI功能 -- [x] 深度学习引擎 -- [x] 多种AI性格 -- [x] 自适应学习 -- [x] 策略优化 - -### 系统功能 -- [x] 并行计算 -- [x] 性能监控 -- [x] 可视化分析 -- [x] 实时数据处理 - -## 待优化功能 - -1. 分布式系统支持 -2. 数据持久化 -3. 更多AI算法 -4. Web界面 -5. 移动端支持 -6. 安全性增强 -7. 容错机制 -8. 日志系统 - -## 使用说明 - -### 1. 启动系统 -```erlang -% 编译所有模块 -c(matrix). -c(optimizer). -c(deep_learning). -c(parallel_compute). -c(performance_monitor). -c(ai_test). - -% 运行测试 -ai_test:run_test(). -``` - -### 2. 创建游戏房间 -```erlang -{ok, RoomId} = room_manager:create_room("新手房", PlayerPid). -``` - -### 3. 添加AI玩家 -```erlang -{ok, AiPlayer} = advanced_ai_player:start_link("AI_Player", aggressive). -``` - -## 错误处理 - -系统实现了基本的错误处理机制: -- 游戏异常处理 -- AI系统容错 -- 并行计算错误恢复 -- 性能监控告警 - -## 维护建议 - -1. 定期检查性能监控报告 -2. 更新AI模型训练数据 -3. 优化并行计算配置 -4. 备份系统数据 - -## 联系方式 - -- 作者:SisMaker -- 文档最后更新:2025-02-21 03:49:02 UTC - -## 版权信息 - -版权所有 © 2025 SisMaker。保留所有权利。 - ---- - -本文档详细描述了斗地主AI系统的架构、功能和实现细节,为系统的使用、维护和进一步开发提供了参考。如有任何问题或建议,请联系作者。 \ No newline at end of file