-module(performance_monitor). -behaviour(gen_server). -export([start_link/0, init/1, handle_call/3, handle_cast/2, handle_info/2, terminate/2, code_change/3]). -export([start_monitoring/1, stop_monitoring/1, get_metrics/1, generate_report/1]). -record(state, { monitors = #{}, % 监控对象集合 metrics = #{}, % 性能指标数据 alerts = [], % 告警信息 start_time = undefined }). -record(monitor_data, { type, % 监控类型 metrics = [], % 指标列表 threshold = #{}, % 阈值设置 callback % 回调函数 }). %% API start_link() -> gen_server:start_link({local, ?MODULE}, ?MODULE, [], []). start_monitoring(Target) -> gen_server:call(?MODULE, {start_monitoring, Target}). stop_monitoring(Target) -> gen_server:call(?MODULE, {stop_monitoring, Target}). get_metrics(Target) -> gen_server:call(?MODULE, {get_metrics, Target}). generate_report(Target) -> gen_server:call(?MODULE, {generate_report, Target}). %% 内部函数 collect_metrics(Target) -> % 收集各种性能指标 #{ cpu_usage => get_cpu_usage(Target), memory_usage => get_memory_usage(Target), response_time => get_response_time(Target), throughput => get_throughput(Target) }. analyze_performance(Metrics) -> % 分析性能数据 #{ avg_response_time => calculate_average(maps:get(response_time, Metrics)), peak_memory => get_peak_value(maps:get(memory_usage, Metrics)), bottlenecks => identify_bottlenecks(Metrics) }. generate_alerts(Metrics, Thresholds) -> % 生成性能告警 lists:filtermap( fun({Metric, Value}) -> case check_threshold(Metric, Value, Thresholds) of {true, Alert} -> {true, Alert}; false -> false end end, maps:to_list(Metrics) ). create_report(Target, Metrics) -> % 生成性能报告 #{ target => Target, timestamp => os:timestamp(), metrics => Metrics, analysis => analyze_performance(Metrics), recommendations => generate_recommendations(Metrics) }.