Nie możesz wybrać więcej, niż 25 tematów Tematy muszą się zaczynać od litery lub cyfry, mogą zawierać myślniki ('-') i mogą mieć do 35 znaków.
 

176 wiersze
4.9 KiB

-module(ai_core).
-export([init_ai/1, make_decision/2, update_strategy/3]).
-record(ai_state, {
personality, % aggressive | conservative | balanced
strategy_weights, % 策略权重
knowledge_base, % 知识库
game_history = [] % 游戏历史
}).
%% AI初始化
init_ai(Personality) ->
#ai_state{
personality = Personality,
strategy_weights = init_weights(Personality),
knowledge_base = init_knowledge_base()
}.
%% 决策制定
make_decision(AIState, GameState) ->
% 分析当前局势
Situation = analyze_situation(GameState),
% 生成可能的行动
PossiblePlays = generate_possible_plays(GameState),
% 评估每个行动
RatedPlays = evaluate_plays(PossiblePlays, AIState, Situation),
% 选择最佳行动
select_best_play(RatedPlays, AIState).
%% 策略更新
update_strategy(AIState, GameResult, GameHistory) ->
NewWeights = adjust_weights(AIState#ai_state.strategy_weights, GameResult),
NewKnowledge = update_knowledge(AIState#ai_state.knowledge_base, GameHistory),
AIState#ai_state{
strategy_weights = NewWeights,
knowledge_base = NewKnowledge,
game_history = [GameHistory | AIState#ai_state.game_history]
}.
%% 内部函数
init_weights(aggressive) ->
#{
control_weight => 0.8,
attack_weight => 0.7,
defense_weight => 0.3,
risk_weight => 0.6
};
init_weights(conservative) ->
#{
control_weight => 0.5,
attack_weight => 0.4,
defense_weight => 0.8,
risk_weight => 0.3
};
init_weights(balanced) ->
#{
control_weight => 0.6,
attack_weight => 0.6,
defense_weight => 0.6,
risk_weight => 0.5
}.
analyze_situation(GameState) ->
#{
hand_strength => evaluate_hand_strength(GameState),
control_status => evaluate_control(GameState),
opponent_cards => estimate_opponent_cards(GameState),
game_stage => determine_game_stage(GameState)
}.
generate_possible_plays(GameState) ->
MyCards = get_my_cards(GameState),
LastPlay = get_last_play(GameState),
generate_valid_plays(MyCards, LastPlay).
evaluate_plays(Plays, AIState, Situation) ->
lists:map(
fun(Play) ->
Score = calculate_play_score(Play, AIState, Situation),
{Play, Score}
end,
Plays
).
calculate_play_score(Play, AIState, Situation) ->
Weights = AIState#ai_state.strategy_weights,
ControlScore = evaluate_control_value(Play, Situation) *
maps:get(control_weight, Weights),
AttackScore = evaluate_attack_value(Play, Situation) *
maps:get(attack_weight, Weights),
DefenseScore = evaluate_defense_value(Play, Situation) *
maps:get(defense_weight, Weights),
RiskScore = evaluate_risk_value(Play, Situation) *
maps:get(risk_weight, Weights),
ControlScore + AttackScore + DefenseScore + RiskScore.
select_best_play(RatedPlays, AIState) ->
case AIState#ai_state.personality of
aggressive ->
select_aggressive(RatedPlays);
conservative ->
select_conservative(RatedPlays);
balanced ->
select_balanced(RatedPlays)
end.
%% 策略选择函数
select_aggressive(RatedPlays) ->
% 倾向于选择得分最高的行动
{Play, _Score} = lists:max(RatedPlays),
Play.
select_conservative(RatedPlays) ->
% 倾向于选择风险较低的行动
SafePlays = filter_safe_plays(RatedPlays),
case SafePlays of
[] -> select_balanced(RatedPlays);
_ -> select_from_safe_plays(SafePlays)
end.
select_balanced(RatedPlays) ->
% 在得分和风险之间寻找平衡
{Play, _Score} = select_balanced_play(RatedPlays),
Play.
%% 评估函数
evaluate_hand_strength(GameState) ->
Cards = get_my_cards(GameState),
calculate_hand_value(Cards).
evaluate_control(GameState) ->
% 评估是否控制局势
LastPlay = get_last_play(GameState),
MyCards = get_my_cards(GameState),
can_control_game(MyCards, LastPlay).
estimate_opponent_cards(GameState) ->
% 基于已出牌情况估计对手手牌
PlayedCards = get_played_cards(GameState),
MyCards = get_my_cards(GameState),
estimate_remaining_cards(PlayedCards, MyCards).
%% 知识库更新
update_knowledge(KnowledgeBase, GameHistory) ->
% 更新AI的知识库
NewPatterns = extract_patterns(GameHistory),
merge_knowledge(KnowledgeBase, NewPatterns).
extract_patterns(GameHistory) ->
% 从游戏历史中提取出牌模式
lists:foldl(
fun(Play, Patterns) ->
Pattern = analyze_play_pattern(Play),
update_pattern_stats(Pattern, Patterns)
end,
#{},
GameHistory
).
merge_knowledge(Old, New) ->
maps:merge_with(
fun(_Key, OldValue, NewValue) ->
update_knowledge_value(OldValue, NewValue)
end,
Old,
New
).