|
-module(utVMInfo).
|
|
|
|
-compile([export_all, nowarn_export_all]).
|
|
|
|
%% 打印并排序各个表的缓存消耗
|
|
show_cache() ->
|
|
io:format("table name | memory | size~n", []),
|
|
lists:reverse(lists:keysort(2, [{T, ets:info(T, memory), ets:info(T, size)} || T <- ets:all()])).
|
|
|
|
%% 打印进程消耗内存的信息
|
|
show_process() ->
|
|
lists:reverse(lists:keysort(2, [{erlang:process_info(P, registered_name), erlang:process_info(P, heap_size)} || P <- erlang:processes()])).
|
|
|
|
%% 打印当前进程数量
|
|
show_process_count() ->
|
|
length(erlang:processes()).
|
|
|
|
%% 反编译
|
|
%% 确认线上运行代码是否正确,reltools没掌握好,升级偶尔出现问题
|
|
decompile(Mod) ->
|
|
{ok,{_,[{abstract_code,{_,AC}}]}} = beam_lib:chunks(code:which(Mod), [abstract_code]),
|
|
io:format("~s~n", [erl_prettypr:format(erl_syntax:form_list(AC))]).
|
|
|
|
%% 进程栈
|
|
%% 类似于jstack,发现大量进程挂起,进程数过高,运行慢,hang住等问题用到
|
|
pstack(Reg) when is_atom(Reg) ->
|
|
case whereis(Reg) of
|
|
undefined -> undefined;
|
|
Pid -> pstack(Pid)
|
|
end;
|
|
pstack(Pid) ->
|
|
io:format("~s~n", [element(2, process_info(Pid, backtrace))]).
|
|
|
|
%% ====================================================================
|
|
%% etop
|
|
%% 分析内存、cpu占用进程,即使数十w进程node 也能正常使用
|
|
%% 进程CPU占用排名
|
|
%% --------------------------------------------------------------------
|
|
etop() ->
|
|
spawn(fun() -> etop:start([{output, text}, {interval, 10}, {lines, 20}, {sort, reductions}]) end).
|
|
|
|
%% 进程Mem占用排名
|
|
etop_mem() ->
|
|
spawn(fun() -> etop:start([{output, text}, {interval, 10}, {lines, 20}, {sort, memory}]) end).
|
|
|
|
%% 停止etop
|
|
etop_stop() ->
|
|
etop:stop().
|
|
%% ====================================================================
|
|
|
|
%% 对所有process做gc
|
|
%% 进程内存过高时,来一发,看看是内存泄露还是gc不过来
|
|
gc_all() ->
|
|
[erlang:garbage_collect(Pid) || Pid <- processes()].
|
|
|
|
%% 对MFA 执行分析,会严重减缓运行,建议只对小量业务执行
|
|
%% 结果:
|
|
%% fprof 结果比较详细,能够输出热点调用路径
|
|
fprof(M, F, A) ->
|
|
fprof:start(),
|
|
fprof:apply(M, F, A),
|
|
fprof:profile(),
|
|
fprof:analyse(),
|
|
fprof:stop().
|
|
|
|
%% 对整个节点内所有进程执行eprof, eprof 对线上业务有一定影响,慎用!
|
|
%% 建议TimeoutSec<10s,且进程数< 1000,否则可能导致节点crash
|
|
%% 结果:
|
|
%% 输出每个方法实际执行时间(不会累计方法内其他mod调用执行时间)
|
|
%% 只能得到mod - Fun 执行次数 执行耗时
|
|
eprof_all(TimeoutSec) ->
|
|
eprof(processes() -- [whereis(eprof)], TimeoutSec).
|
|
|
|
eprof(Pids, TimeoutSec) ->
|
|
eprof:start(),
|
|
eprof:start_profiling(Pids),
|
|
timer:sleep(TimeoutSec),
|
|
eprof:stop_profiling(),
|
|
eprof:analyze(total),
|
|
eprof:stop().
|
|
|
|
%% scheduler usage
|
|
%% 统计下1s每个调度器CPU的实际利用率(因为有spin wait、调度工作, 可能usage 比top显示低很多)
|
|
scheduler_usage() ->
|
|
scheduler_usage(1000).
|
|
|
|
scheduler_usage(RunMs) ->
|
|
erlang:system_flag(scheduler_wall_time, true),
|
|
Ts0 = lists:sort(erlang:statistics(scheduler_wall_time)),
|
|
timer:sleep(RunMs),
|
|
Ts1 = lists:sort(erlang:statistics(scheduler_wall_time)),
|
|
erlang:system_flag(scheduler_wall_time, false),
|
|
Cores = lists:map(fun({{_I, A0, T0}, {I, A1, T1}}) ->
|
|
{I, (A1 - A0) / (T1 - T0)} end, lists:zip(Ts0, Ts1)),
|
|
{A, T} = lists:foldl(fun({{_, A0, T0}, {_, A1, T1}}, {Ai,Ti}) ->
|
|
{Ai + (A1 - A0), Ti + (T1 - T0)} end, {0, 0}, lists:zip(Ts0, Ts1)),
|
|
Total = A/T,
|
|
io:format("~p~n", [[{total, Total} | Cores]]).
|
|
|
|
%% 进程调度
|
|
%% 统计下1s内调度进程数量(含义:第一个数字执行进程数量,第二个数字迁移进程数量)
|
|
scheduler_stat() ->
|
|
scheduler_stat(1000).
|
|
|
|
scheduler_stat(RunMs) ->
|
|
erlang:system_flag(scheduling_statistics, enable),
|
|
Ts0 = erlang:system_info(total_scheduling_statistics),
|
|
timer:sleep(RunMs),
|
|
Ts1 = erlang:system_info(total_scheduling_statistics),
|
|
erlang:system_flag(scheduling_statistics, disable),
|
|
lists:map(fun({{_Key, In0, Out0}, {Key, In1, Out1}}) ->
|
|
{Key, In1 - In0, Out1 - Out0} end, lists:zip(Ts0, Ts1)).
|
|
|
|
%% ====================================================================
|
|
%% trace 日志
|
|
%% 会把mod 每次调用详细MFA log 下来,args 太大就不好看了
|
|
%% trace Mod 所有方法的调用
|
|
%% --------------------------------------------------------------------
|
|
trace(Mod) ->
|
|
dbg:tracer(),
|
|
dbg:tpl(Mod, '_', []),
|
|
dbg:p(all, c).
|
|
|
|
%% trace Node上指定 Mod 所有方法的调用, 结果将输出到本地shell
|
|
trace(Node, Mod) ->
|
|
dbg:tracer(),
|
|
dbg:n(Node),
|
|
dbg:tpl(Mod, '_', []),
|
|
dbg:p(all, c).
|
|
|
|
%% 停止trace
|
|
trace_stop() ->
|
|
dbg:stop_clear().
|
|
%% ====================================================================
|
|
|
|
%% 内存高OOM 排查工具
|
|
%% etop 无法应对10w+ 进程节点, 下面代码就没问题了;找到可疑proc后通过pstack、message_queu_len 排查原因
|
|
proc_mem_all(SizeLimitKb) ->
|
|
Procs = [{undefined, Pid} || Pid<- erlang:processes()],
|
|
proc_mem(Procs, SizeLimitKb).
|
|
|
|
proc_mem(SizeLimitKb) ->
|
|
Procs = [{Name, Pid} || {_, Name, Pid, _} <- release_handler_1:get_supervised_procs(),
|
|
is_process_alive(Pid)],
|
|
proc_mem(Procs, SizeLimitKb).
|
|
|
|
proc_mem(Procs, SizeLimitKb) ->
|
|
SizeLimit = SizeLimitKb * 1024,
|
|
{R, Total} = lists:foldl(fun({Name, Pid}, {Acc, TotalSize}) ->
|
|
case erlang:process_info(Pid, total_heap_size) of
|
|
{_, Size0} ->
|
|
Size = Size0*8,
|
|
case Size > SizeLimit of
|
|
true -> {[{Name, Pid, Size} | Acc], TotalSize+Size};
|
|
false -> {Acc, TotalSize}
|
|
end;
|
|
_ -> {Acc, TotalSize}
|
|
end
|
|
end, {[], 0}, Procs),
|
|
R1 = lists:keysort(3, R),
|
|
{Total, lists:reverse(R1)}.
|
|
|
|
%% ====================================================================
|
|
%% Internal functions
|
|
%% ====================================================================
|
|
|
|
|