You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

666 lines
30 KiB

  1. // Copyright 2012 the V8 project authors. All rights reserved.
  2. // Redistribution and use in source and binary forms, with or without
  3. // modification, are permitted provided that the following conditions are
  4. // met:
  5. //
  6. // * Redistributions of source code must retain the above copyright
  7. // notice, this list of conditions and the following disclaimer.
  8. // * Redistributions in binary form must reproduce the above
  9. // copyright notice, this list of conditions and the following
  10. // disclaimer in the documentation and/or other materials provided
  11. // with the distribution.
  12. // * Neither the name of Google Inc. nor the names of its
  13. // contributors may be used to endorse or promote products derived
  14. // from this software without specific prior written permission.
  15. //
  16. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  17. // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  18. // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  19. // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  20. // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  21. // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  22. // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23. // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24. // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  26. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27. #include "fast-dtoa.h"
  28. #include "cached-powers.h"
  29. #include "diy-fp.h"
  30. #include "ieee.h"
  31. namespace double_conversion {
  32. // The minimal and maximal target exponent define the range of w's binary
  33. // exponent, where 'w' is the result of multiplying the input by a cached power
  34. // of ten.
  35. //
  36. // A different range might be chosen on a different platform, to optimize digit
  37. // generation, but a smaller range requires more powers of ten to be cached.
  38. static const int kMinimalTargetExponent = -60;
  39. static const int kMaximalTargetExponent = -32;
  40. // Adjusts the last digit of the generated number, and screens out generated
  41. // solutions that may be inaccurate. A solution may be inaccurate if it is
  42. // outside the safe interval, or if we cannot prove that it is closer to the
  43. // input than a neighboring representation of the same length.
  44. //
  45. // Input: * buffer containing the digits of too_high / 10^kappa
  46. // * the buffer's length
  47. // * distance_too_high_w == (too_high - w).f() * unit
  48. // * unsafe_interval == (too_high - too_low).f() * unit
  49. // * rest = (too_high - buffer * 10^kappa).f() * unit
  50. // * ten_kappa = 10^kappa * unit
  51. // * unit = the common multiplier
  52. // Output: returns true if the buffer is guaranteed to contain the closest
  53. // representable number to the input.
  54. // Modifies the generated digits in the buffer to approach (round towards) w.
  55. static bool RoundWeed(Vector<char> buffer,
  56. int length,
  57. uint64_t distance_too_high_w,
  58. uint64_t unsafe_interval,
  59. uint64_t rest,
  60. uint64_t ten_kappa,
  61. uint64_t unit) {
  62. uint64_t small_distance = distance_too_high_w - unit;
  63. uint64_t big_distance = distance_too_high_w + unit;
  64. // Let w_low = too_high - big_distance, and
  65. // w_high = too_high - small_distance.
  66. // Note: w_low < w < w_high
  67. //
  68. // The real w (* unit) must lie somewhere inside the interval
  69. // ]w_low; w_high[ (often written as "(w_low; w_high)")
  70. // Basically the buffer currently contains a number in the unsafe interval
  71. // ]too_low; too_high[ with too_low < w < too_high
  72. //
  73. // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  74. // ^v 1 unit ^ ^ ^ ^
  75. // boundary_high --------------------- . . . .
  76. // ^v 1 unit . . . .
  77. // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
  78. // . . ^ . .
  79. // . big_distance . . .
  80. // . . . . rest
  81. // small_distance . . . .
  82. // v . . . .
  83. // w_high - - - - - - - - - - - - - - - - - - . . . .
  84. // ^v 1 unit . . . .
  85. // w ---------------------------------------- . . . .
  86. // ^v 1 unit v . . .
  87. // w_low - - - - - - - - - - - - - - - - - - - - - . . .
  88. // . . v
  89. // buffer --------------------------------------------------+-------+--------
  90. // . .
  91. // safe_interval .
  92. // v .
  93. // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
  94. // ^v 1 unit .
  95. // boundary_low ------------------------- unsafe_interval
  96. // ^v 1 unit v
  97. // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  98. //
  99. //
  100. // Note that the value of buffer could lie anywhere inside the range too_low
  101. // to too_high.
  102. //
  103. // boundary_low, boundary_high and w are approximations of the real boundaries
  104. // and v (the input number). They are guaranteed to be precise up to one unit.
  105. // In fact the error is guaranteed to be strictly less than one unit.
  106. //
  107. // Anything that lies outside the unsafe interval is guaranteed not to round
  108. // to v when read again.
  109. // Anything that lies inside the safe interval is guaranteed to round to v
  110. // when read again.
  111. // If the number inside the buffer lies inside the unsafe interval but not
  112. // inside the safe interval then we simply do not know and bail out (returning
  113. // false).
  114. //
  115. // Similarly we have to take into account the imprecision of 'w' when finding
  116. // the closest representation of 'w'. If we have two potential
  117. // representations, and one is closer to both w_low and w_high, then we know
  118. // it is closer to the actual value v.
  119. //
  120. // By generating the digits of too_high we got the largest (closest to
  121. // too_high) buffer that is still in the unsafe interval. In the case where
  122. // w_high < buffer < too_high we try to decrement the buffer.
  123. // This way the buffer approaches (rounds towards) w.
  124. // There are 3 conditions that stop the decrementation process:
  125. // 1) the buffer is already below w_high
  126. // 2) decrementing the buffer would make it leave the unsafe interval
  127. // 3) decrementing the buffer would yield a number below w_high and farther
  128. // away than the current number. In other words:
  129. // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
  130. // Instead of using the buffer directly we use its distance to too_high.
  131. // Conceptually rest ~= too_high - buffer
  132. // We need to do the following tests in this order to avoid over- and
  133. // underflows.
  134. ASSERT(rest <= unsafe_interval);
  135. while (rest < small_distance && // Negated condition 1
  136. unsafe_interval - rest >= ten_kappa && // Negated condition 2
  137. (rest + ten_kappa < small_distance || // buffer{-1} > w_high
  138. small_distance - rest >= rest + ten_kappa - small_distance)) {
  139. buffer[length - 1]--;
  140. rest += ten_kappa;
  141. }
  142. // We have approached w+ as much as possible. We now test if approaching w-
  143. // would require changing the buffer. If yes, then we have two possible
  144. // representations close to w, but we cannot decide which one is closer.
  145. if (rest < big_distance &&
  146. unsafe_interval - rest >= ten_kappa &&
  147. (rest + ten_kappa < big_distance ||
  148. big_distance - rest > rest + ten_kappa - big_distance)) {
  149. return false;
  150. }
  151. // Weeding test.
  152. // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
  153. // Since too_low = too_high - unsafe_interval this is equivalent to
  154. // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
  155. // Conceptually we have: rest ~= too_high - buffer
  156. return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
  157. }
  158. // Rounds the buffer upwards if the result is closer to v by possibly adding
  159. // 1 to the buffer. If the precision of the calculation is not sufficient to
  160. // round correctly, return false.
  161. // The rounding might shift the whole buffer in which case the kappa is
  162. // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
  163. //
  164. // If 2*rest > ten_kappa then the buffer needs to be round up.
  165. // rest can have an error of +/- 1 unit. This function accounts for the
  166. // imprecision and returns false, if the rounding direction cannot be
  167. // unambiguously determined.
  168. //
  169. // Precondition: rest < ten_kappa.
  170. static bool RoundWeedCounted(Vector<char> buffer,
  171. int length,
  172. uint64_t rest,
  173. uint64_t ten_kappa,
  174. uint64_t unit,
  175. int* kappa) {
  176. ASSERT(rest < ten_kappa);
  177. // The following tests are done in a specific order to avoid overflows. They
  178. // will work correctly with any uint64 values of rest < ten_kappa and unit.
  179. //
  180. // If the unit is too big, then we don't know which way to round. For example
  181. // a unit of 50 means that the real number lies within rest +/- 50. If
  182. // 10^kappa == 40 then there is no way to tell which way to round.
  183. if (unit >= ten_kappa) return false;
  184. // Even if unit is just half the size of 10^kappa we are already completely
  185. // lost. (And after the previous test we know that the expression will not
  186. // over/underflow.)
  187. if (ten_kappa - unit <= unit) return false;
  188. // If 2 * (rest + unit) <= 10^kappa we can safely round down.
  189. if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
  190. return true;
  191. }
  192. // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
  193. if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
  194. // Increment the last digit recursively until we find a non '9' digit.
  195. buffer[length - 1]++;
  196. for (int i = length - 1; i > 0; --i) {
  197. if (buffer[i] != '0' + 10) break;
  198. buffer[i] = '0';
  199. buffer[i - 1]++;
  200. }
  201. // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
  202. // exception of the first digit all digits are now '0'. Simply switch the
  203. // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
  204. // the power (the kappa) is increased.
  205. if (buffer[0] == '0' + 10) {
  206. buffer[0] = '1';
  207. (*kappa) += 1;
  208. }
  209. return true;
  210. }
  211. return false;
  212. }
  213. // Returns the biggest power of ten that is less than or equal to the given
  214. // number. We furthermore receive the maximum number of bits 'number' has.
  215. //
  216. // Returns power == 10^(exponent_plus_one-1) such that
  217. // power <= number < power * 10.
  218. // If number_bits == 0 then 0^(0-1) is returned.
  219. // The number of bits must be <= 32.
  220. // Precondition: number < (1 << (number_bits + 1)).
  221. // Inspired by the method for finding an integer log base 10 from here:
  222. // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
  223. static unsigned int const kSmallPowersOfTen[] =
  224. {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
  225. 1000000000};
  226. static void BiggestPowerTen(uint32_t number,
  227. int number_bits,
  228. uint32_t* power,
  229. int* exponent_plus_one) {
  230. ASSERT(number < (1u << (number_bits + 1)));
  231. // 1233/4096 is approximately 1/lg(10).
  232. int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12);
  233. // We increment to skip over the first entry in the kPowersOf10 table.
  234. // Note: kPowersOf10[i] == 10^(i-1).
  235. exponent_plus_one_guess++;
  236. // We don't have any guarantees that 2^number_bits <= number.
  237. // TODO(floitsch): can we change the 'while' into an 'if'? We definitely see
  238. // number < (2^number_bits - 1), but I haven't encountered
  239. // number < (2^number_bits - 2) yet.
  240. while (number < kSmallPowersOfTen[exponent_plus_one_guess]) {
  241. exponent_plus_one_guess--;
  242. if (exponent_plus_one_guess <= 0)
  243. break;
  244. }
  245. *power = kSmallPowersOfTen[exponent_plus_one_guess];
  246. *exponent_plus_one = exponent_plus_one_guess;
  247. }
  248. // Generates the digits of input number w.
  249. // w is a floating-point number (DiyFp), consisting of a significand and an
  250. // exponent. Its exponent is bounded by kMinimalTargetExponent and
  251. // kMaximalTargetExponent.
  252. // Hence -60 <= w.e() <= -32.
  253. //
  254. // Returns false if it fails, in which case the generated digits in the buffer
  255. // should not be used.
  256. // Preconditions:
  257. // * low, w and high are correct up to 1 ulp (unit in the last place). That
  258. // is, their error must be less than a unit of their last digits.
  259. // * low.e() == w.e() == high.e()
  260. // * low < w < high, and taking into account their error: low~ <= high~
  261. // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
  262. // Postconditions: returns false if procedure fails.
  263. // otherwise:
  264. // * buffer is not null-terminated, but len contains the number of digits.
  265. // * buffer contains the shortest possible decimal digit-sequence
  266. // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
  267. // correct values of low and high (without their error).
  268. // * if more than one decimal representation gives the minimal number of
  269. // decimal digits then the one closest to W (where W is the correct value
  270. // of w) is chosen.
  271. // Remark: this procedure takes into account the imprecision of its input
  272. // numbers. If the precision is not enough to guarantee all the postconditions
  273. // then false is returned. This usually happens rarely (~0.5%).
  274. //
  275. // Say, for the sake of example, that
  276. // w.e() == -48, and w.f() == 0x1234567890abcdef
  277. // w's value can be computed by w.f() * 2^w.e()
  278. // We can obtain w's integral digits by simply shifting w.f() by -w.e().
  279. // -> w's integral part is 0x1234
  280. // w's fractional part is therefore 0x567890abcdef.
  281. // Printing w's integral part is easy (simply print 0x1234 in decimal).
  282. // In order to print its fraction we repeatedly multiply the fraction by 10 and
  283. // get each digit. Example the first digit after the point would be computed by
  284. // (0x567890abcdef * 10) >> 48. -> 3
  285. // The whole thing becomes slightly more complicated because we want to stop
  286. // once we have enough digits. That is, once the digits inside the buffer
  287. // represent 'w' we can stop. Everything inside the interval low - high
  288. // represents w. However we have to pay attention to low, high and w's
  289. // imprecision.
  290. static bool DigitGen(DiyFp low,
  291. DiyFp w,
  292. DiyFp high,
  293. Vector<char> buffer,
  294. int* length,
  295. int* kappa) {
  296. ASSERT(low.e() == w.e() && w.e() == high.e());
  297. ASSERT(low.f() + 1 <= high.f() - 1);
  298. ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
  299. // low, w and high are imprecise, but by less than one ulp (unit in the last
  300. // place).
  301. // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
  302. // the new numbers are outside of the interval we want the final
  303. // representation to lie in.
  304. // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
  305. // numbers that are certain to lie in the interval. We will use this fact
  306. // later on.
  307. // We will now start by generating the digits within the uncertain
  308. // interval. Later we will weed out representations that lie outside the safe
  309. // interval and thus _might_ lie outside the correct interval.
  310. uint64_t unit = 1;
  311. DiyFp too_low = DiyFp(low.f() - unit, low.e());
  312. DiyFp too_high = DiyFp(high.f() + unit, high.e());
  313. // too_low and too_high are guaranteed to lie outside the interval we want the
  314. // generated number in.
  315. DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
  316. // We now cut the input number into two parts: the integral digits and the
  317. // fractionals. We will not write any decimal separator though, but adapt
  318. // kappa instead.
  319. // Reminder: we are currently computing the digits (stored inside the buffer)
  320. // such that: too_low < buffer * 10^kappa < too_high
  321. // We use too_high for the digit_generation and stop as soon as possible.
  322. // If we stop early we effectively round down.
  323. DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
  324. // Division by one is a shift.
  325. uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
  326. // Modulo by one is an and.
  327. uint64_t fractionals = too_high.f() & (one.f() - 1);
  328. uint32_t divisor;
  329. int divisor_exponent_plus_one;
  330. BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
  331. &divisor, &divisor_exponent_plus_one);
  332. *kappa = divisor_exponent_plus_one;
  333. *length = 0;
  334. // Loop invariant: buffer = too_high / 10^kappa (integer division)
  335. // The invariant holds for the first iteration: kappa has been initialized
  336. // with the divisor exponent + 1. And the divisor is the biggest power of ten
  337. // that is smaller than integrals.
  338. while (*kappa > 0) {
  339. int digit = integrals / divisor;
  340. buffer[*length] = '0' + digit;
  341. (*length)++;
  342. integrals %= divisor;
  343. (*kappa)--;
  344. // Note that kappa now equals the exponent of the divisor and that the
  345. // invariant thus holds again.
  346. uint64_t rest =
  347. (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
  348. // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
  349. // Reminder: unsafe_interval.e() == one.e()
  350. if (rest < unsafe_interval.f()) {
  351. // Rounding down (by not emitting the remaining digits) yields a number
  352. // that lies within the unsafe interval.
  353. return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
  354. unsafe_interval.f(), rest,
  355. static_cast<uint64_t>(divisor) << -one.e(), unit);
  356. }
  357. divisor /= 10;
  358. }
  359. // The integrals have been generated. We are at the point of the decimal
  360. // separator. In the following loop we simply multiply the remaining digits by
  361. // 10 and divide by one. We just need to pay attention to multiply associated
  362. // data (like the interval or 'unit'), too.
  363. // Note that the multiplication by 10 does not overflow, because w.e >= -60
  364. // and thus one.e >= -60.
  365. ASSERT(one.e() >= -60);
  366. ASSERT(fractionals < one.f());
  367. ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
  368. while (true) {
  369. fractionals *= 10;
  370. unit *= 10;
  371. unsafe_interval.set_f(unsafe_interval.f() * 10);
  372. // Integer division by one.
  373. int digit = static_cast<int>(fractionals >> -one.e());
  374. buffer[*length] = '0' + digit;
  375. (*length)++;
  376. fractionals &= one.f() - 1; // Modulo by one.
  377. (*kappa)--;
  378. if (fractionals < unsafe_interval.f()) {
  379. return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
  380. unsafe_interval.f(), fractionals, one.f(), unit);
  381. }
  382. }
  383. }
  384. // Generates (at most) requested_digits digits of input number w.
  385. // w is a floating-point number (DiyFp), consisting of a significand and an
  386. // exponent. Its exponent is bounded by kMinimalTargetExponent and
  387. // kMaximalTargetExponent.
  388. // Hence -60 <= w.e() <= -32.
  389. //
  390. // Returns false if it fails, in which case the generated digits in the buffer
  391. // should not be used.
  392. // Preconditions:
  393. // * w is correct up to 1 ulp (unit in the last place). That
  394. // is, its error must be strictly less than a unit of its last digit.
  395. // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
  396. //
  397. // Postconditions: returns false if procedure fails.
  398. // otherwise:
  399. // * buffer is not null-terminated, but length contains the number of
  400. // digits.
  401. // * the representation in buffer is the most precise representation of
  402. // requested_digits digits.
  403. // * buffer contains at most requested_digits digits of w. If there are less
  404. // than requested_digits digits then some trailing '0's have been removed.
  405. // * kappa is such that
  406. // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
  407. //
  408. // Remark: This procedure takes into account the imprecision of its input
  409. // numbers. If the precision is not enough to guarantee all the postconditions
  410. // then false is returned. This usually happens rarely, but the failure-rate
  411. // increases with higher requested_digits.
  412. static bool DigitGenCounted(DiyFp w,
  413. int requested_digits,
  414. Vector<char> buffer,
  415. int* length,
  416. int* kappa) {
  417. ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
  418. ASSERT(kMinimalTargetExponent >= -60);
  419. ASSERT(kMaximalTargetExponent <= -32);
  420. // w is assumed to have an error less than 1 unit. Whenever w is scaled we
  421. // also scale its error.
  422. uint64_t w_error = 1;
  423. // We cut the input number into two parts: the integral digits and the
  424. // fractional digits. We don't emit any decimal separator, but adapt kappa
  425. // instead. Example: instead of writing "1.2" we put "12" into the buffer and
  426. // increase kappa by 1.
  427. DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
  428. // Division by one is a shift.
  429. uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
  430. // Modulo by one is an and.
  431. uint64_t fractionals = w.f() & (one.f() - 1);
  432. uint32_t divisor;
  433. int divisor_exponent_plus_one;
  434. BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
  435. &divisor, &divisor_exponent_plus_one);
  436. *kappa = divisor_exponent_plus_one;
  437. *length = 0;
  438. // Loop invariant: buffer = w / 10^kappa (integer division)
  439. // The invariant holds for the first iteration: kappa has been initialized
  440. // with the divisor exponent + 1. And the divisor is the biggest power of ten
  441. // that is smaller than 'integrals'.
  442. while (*kappa > 0) {
  443. int digit = integrals / divisor;
  444. buffer[*length] = '0' + digit;
  445. (*length)++;
  446. requested_digits--;
  447. integrals %= divisor;
  448. (*kappa)--;
  449. // Note that kappa now equals the exponent of the divisor and that the
  450. // invariant thus holds again.
  451. if (requested_digits == 0) break;
  452. divisor /= 10;
  453. }
  454. if (requested_digits == 0) {
  455. uint64_t rest =
  456. (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
  457. return RoundWeedCounted(buffer, *length, rest,
  458. static_cast<uint64_t>(divisor) << -one.e(), w_error,
  459. kappa);
  460. }
  461. // The integrals have been generated. We are at the point of the decimal
  462. // separator. In the following loop we simply multiply the remaining digits by
  463. // 10 and divide by one. We just need to pay attention to multiply associated
  464. // data (the 'unit'), too.
  465. // Note that the multiplication by 10 does not overflow, because w.e >= -60
  466. // and thus one.e >= -60.
  467. ASSERT(one.e() >= -60);
  468. ASSERT(fractionals < one.f());
  469. ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
  470. while (requested_digits > 0 && fractionals > w_error) {
  471. fractionals *= 10;
  472. w_error *= 10;
  473. // Integer division by one.
  474. int digit = static_cast<int>(fractionals >> -one.e());
  475. buffer[*length] = '0' + digit;
  476. (*length)++;
  477. requested_digits--;
  478. fractionals &= one.f() - 1; // Modulo by one.
  479. (*kappa)--;
  480. }
  481. if (requested_digits != 0) return false;
  482. return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
  483. kappa);
  484. }
  485. // Provides a decimal representation of v.
  486. // Returns true if it succeeds, otherwise the result cannot be trusted.
  487. // There will be *length digits inside the buffer (not null-terminated).
  488. // If the function returns true then
  489. // v == (double) (buffer * 10^decimal_exponent).
  490. // The digits in the buffer are the shortest representation possible: no
  491. // 0.09999999999999999 instead of 0.1. The shorter representation will even be
  492. // chosen even if the longer one would be closer to v.
  493. // The last digit will be closest to the actual v. That is, even if several
  494. // digits might correctly yield 'v' when read again, the closest will be
  495. // computed.
  496. static bool Grisu3(double v,
  497. FastDtoaMode mode,
  498. Vector<char> buffer,
  499. int* length,
  500. int* decimal_exponent) {
  501. DiyFp w = Double(v).AsNormalizedDiyFp();
  502. // boundary_minus and boundary_plus are the boundaries between v and its
  503. // closest floating-point neighbors. Any number strictly between
  504. // boundary_minus and boundary_plus will round to v when convert to a double.
  505. // Grisu3 will never output representations that lie exactly on a boundary.
  506. DiyFp boundary_minus, boundary_plus;
  507. if (mode == FAST_DTOA_SHORTEST) {
  508. Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
  509. } else {
  510. ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE);
  511. float single_v = static_cast<float>(v);
  512. Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
  513. }
  514. ASSERT(boundary_plus.e() == w.e());
  515. DiyFp ten_mk; // Cached power of ten: 10^-k
  516. int mk; // -k
  517. int ten_mk_minimal_binary_exponent =
  518. kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
  519. int ten_mk_maximal_binary_exponent =
  520. kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
  521. PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
  522. ten_mk_minimal_binary_exponent,
  523. ten_mk_maximal_binary_exponent,
  524. &ten_mk, &mk);
  525. ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
  526. DiyFp::kSignificandSize) &&
  527. (kMaximalTargetExponent >= w.e() + ten_mk.e() +
  528. DiyFp::kSignificandSize));
  529. // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
  530. // 64 bit significand and ten_mk is thus only precise up to 64 bits.
  531. // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
  532. // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
  533. // off by a small amount.
  534. // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
  535. // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
  536. // (f-1) * 2^e < w*10^k < (f+1) * 2^e
  537. DiyFp scaled_w = DiyFp::Times(w, ten_mk);
  538. ASSERT(scaled_w.e() ==
  539. boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
  540. // In theory it would be possible to avoid some recomputations by computing
  541. // the difference between w and boundary_minus/plus (a power of 2) and to
  542. // compute scaled_boundary_minus/plus by subtracting/adding from
  543. // scaled_w. However the code becomes much less readable and the speed
  544. // enhancements are not terriffic.
  545. DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
  546. DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
  547. // DigitGen will generate the digits of scaled_w. Therefore we have
  548. // v == (double) (scaled_w * 10^-mk).
  549. // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
  550. // integer than it will be updated. For instance if scaled_w == 1.23 then
  551. // the buffer will be filled with "123" und the decimal_exponent will be
  552. // decreased by 2.
  553. int kappa;
  554. bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
  555. buffer, length, &kappa);
  556. *decimal_exponent = -mk + kappa;
  557. return result;
  558. }
  559. // The "counted" version of grisu3 (see above) only generates requested_digits
  560. // number of digits. This version does not generate the shortest representation,
  561. // and with enough requested digits 0.1 will at some point print as 0.9999999...
  562. // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
  563. // therefore the rounding strategy for halfway cases is irrelevant.
  564. static bool Grisu3Counted(double v,
  565. int requested_digits,
  566. Vector<char> buffer,
  567. int* length,
  568. int* decimal_exponent) {
  569. DiyFp w = Double(v).AsNormalizedDiyFp();
  570. DiyFp ten_mk; // Cached power of ten: 10^-k
  571. int mk; // -k
  572. int ten_mk_minimal_binary_exponent =
  573. kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
  574. int ten_mk_maximal_binary_exponent =
  575. kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
  576. PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
  577. ten_mk_minimal_binary_exponent,
  578. ten_mk_maximal_binary_exponent,
  579. &ten_mk, &mk);
  580. ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
  581. DiyFp::kSignificandSize) &&
  582. (kMaximalTargetExponent >= w.e() + ten_mk.e() +
  583. DiyFp::kSignificandSize));
  584. // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
  585. // 64 bit significand and ten_mk is thus only precise up to 64 bits.
  586. // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
  587. // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
  588. // off by a small amount.
  589. // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
  590. // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
  591. // (f-1) * 2^e < w*10^k < (f+1) * 2^e
  592. DiyFp scaled_w = DiyFp::Times(w, ten_mk);
  593. // We now have (double) (scaled_w * 10^-mk).
  594. // DigitGen will generate the first requested_digits digits of scaled_w and
  595. // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
  596. // will not always be exactly the same since DigitGenCounted only produces a
  597. // limited number of digits.)
  598. int kappa;
  599. bool result = DigitGenCounted(scaled_w, requested_digits,
  600. buffer, length, &kappa);
  601. *decimal_exponent = -mk + kappa;
  602. return result;
  603. }
  604. bool FastDtoa(double v,
  605. FastDtoaMode mode,
  606. int requested_digits,
  607. Vector<char> buffer,
  608. int* length,
  609. int* decimal_point) {
  610. ASSERT(v > 0);
  611. ASSERT(!Double(v).IsSpecial());
  612. bool result = false;
  613. int decimal_exponent = 0;
  614. switch (mode) {
  615. case FAST_DTOA_SHORTEST:
  616. case FAST_DTOA_SHORTEST_SINGLE:
  617. result = Grisu3(v, mode, buffer, length, &decimal_exponent);
  618. break;
  619. case FAST_DTOA_PRECISION:
  620. result = Grisu3Counted(v, requested_digits,
  621. buffer, length, &decimal_exponent);
  622. break;
  623. default:
  624. UNREACHABLE();
  625. }
  626. if (result) {
  627. *decimal_point = *length + decimal_exponent;
  628. buffer[*length] = '\0';
  629. }
  630. return result;
  631. }
  632. } // namespace double_conversion