Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

908 linhas
22 KiB

  1. // This file is part of Jiffy released under the MIT license.
  2. // See the LICENSE file for more information.
  3. #include <assert.h>
  4. #include <stdio.h>
  5. #include <string.h>
  6. #include "jiffy.h"
  7. #include "termstack.h"
  8. #define BIN_INC_SIZE 2048
  9. #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
  10. #define MAYBE_PRETTY(e) \
  11. do { \
  12. if(e->pretty) { \
  13. if(!enc_shift(e)) \
  14. return 0; \
  15. } \
  16. } while(0)
  17. #if WINDOWS || WIN32
  18. #define inline __inline
  19. #define snprintf _snprintf
  20. #endif
  21. typedef struct {
  22. ErlNifEnv* env;
  23. jiffy_st* atoms;
  24. size_t bytes_per_red;
  25. int uescape;
  26. int pretty;
  27. int use_nil;
  28. int escape_forward_slashes;
  29. int shiftcnt;
  30. int count;
  31. size_t iolen;
  32. size_t iosize;
  33. ERL_NIF_TERM iolist;
  34. ErlNifBinary bin;
  35. ErlNifBinary* curr;
  36. char* p;
  37. unsigned char* u;
  38. size_t i;
  39. } Encoder;
  40. // String constants for pretty printing.
  41. // Every string starts with its length.
  42. #define NUM_SHIFTS 8
  43. static char* shifts[NUM_SHIFTS] = {
  44. "\x01\n",
  45. "\x03\n ",
  46. "\x05\n ",
  47. "\x07\n ",
  48. "\x09\n ",
  49. "\x0b\n ",
  50. "\x0d\n ",
  51. "\x0f\n "
  52. };
  53. Encoder*
  54. enc_new(ErlNifEnv* env)
  55. {
  56. jiffy_st* st = (jiffy_st*) enif_priv_data(env);
  57. Encoder* e = enif_alloc_resource(st->res_enc, sizeof(Encoder));
  58. e->atoms = st;
  59. e->bytes_per_red = DEFAULT_BYTES_PER_REDUCTION;
  60. e->uescape = 0;
  61. e->pretty = 0;
  62. e->use_nil = 0;
  63. e->escape_forward_slashes = 0;
  64. e->shiftcnt = 0;
  65. e->count = 0;
  66. e->iolen = 0;
  67. e->iosize = 0;
  68. e->curr = &(e->bin);
  69. if(!enif_alloc_binary(BIN_INC_SIZE, e->curr)) {
  70. e->curr = NULL;
  71. enif_release_resource(e);
  72. return NULL;
  73. }
  74. memset(e->curr->data, 0, e->curr->size);
  75. e->p = (char*) e->curr->data;
  76. e->u = (unsigned char*) e->curr->data;
  77. e->i = 0;
  78. return e;
  79. }
  80. int
  81. enc_init(Encoder* e, ErlNifEnv* env)
  82. {
  83. e->env = env;
  84. return 1;
  85. }
  86. void
  87. enc_destroy(ErlNifEnv* env, void* obj)
  88. {
  89. Encoder* e = (Encoder*) obj;
  90. if(e->curr != NULL) {
  91. enif_release_binary(e->curr);
  92. }
  93. }
  94. ERL_NIF_TERM
  95. enc_error(Encoder* e, const char* msg)
  96. {
  97. //assert(0 && msg);
  98. return make_error(e->atoms, e->env, msg);
  99. }
  100. ERL_NIF_TERM
  101. enc_obj_error(Encoder* e, const char* msg, ERL_NIF_TERM obj)
  102. {
  103. return make_obj_error(e->atoms, e->env, msg, obj);
  104. }
  105. static inline int
  106. enc_ensure(Encoder* e, size_t req)
  107. {
  108. size_t need = e->curr->size;
  109. while(req >= (need - e->i)) need <<= 1;
  110. if(need != e->curr->size) {
  111. if(!enif_realloc_binary(e->curr, need)) {
  112. return 0;
  113. }
  114. e->p = (char*) e->curr->data;
  115. e->u = (unsigned char*) e->curr->data;
  116. }
  117. return 1;
  118. }
  119. int
  120. enc_result(Encoder* e, ERL_NIF_TERM* value)
  121. {
  122. if(e->i != e->curr->size) {
  123. if(!enif_realloc_binary(e->curr, e->i)) {
  124. return 0;
  125. }
  126. }
  127. *value = enif_make_binary(e->env, e->curr);
  128. e->curr = NULL;
  129. return 1;
  130. }
  131. int
  132. enc_done(Encoder* e, ERL_NIF_TERM* value)
  133. {
  134. ERL_NIF_TERM last;
  135. if(e->iolen == 0) {
  136. return enc_result(e, value);
  137. }
  138. if(e->i > 0 ) {
  139. if(!enc_result(e, &last)) {
  140. return 0;
  141. }
  142. e->iolist = enif_make_list_cell(e->env, last, e->iolist);
  143. e->iolen++;
  144. }
  145. *value = e->iolist;
  146. return 1;
  147. }
  148. static inline int
  149. enc_unknown(Encoder* e, ERL_NIF_TERM value)
  150. {
  151. ErlNifBinary* bin = e->curr;
  152. ERL_NIF_TERM curr;
  153. if(e->i > 0) {
  154. if(!enc_result(e, &curr)) {
  155. return 0;
  156. }
  157. e->iolist = enif_make_list_cell(e->env, curr, e->iolist);
  158. e->iolen++;
  159. }
  160. e->iolist = enif_make_list_cell(e->env, value, e->iolist);
  161. e->iolen++;
  162. // Track the total number of bytes produced before
  163. // splitting our IO buffer. We add 16 to this value
  164. // as a rough estimate of the number of bytes that
  165. // a bignum might produce when encoded.
  166. e->iosize += e->i + 16;
  167. // Reinitialize our binary for the next buffer if we
  168. // used any data in the buffer. If we haven't used any
  169. // bytes in the buffer then we can safely reuse it
  170. // for anything following the unknown value.
  171. if(e->i > 0) {
  172. e->curr = bin;
  173. if(!enif_alloc_binary(BIN_INC_SIZE, e->curr)) {
  174. return 0;
  175. }
  176. memset(e->curr->data, 0, e->curr->size);
  177. e->p = (char*) e->curr->data;
  178. e->u = (unsigned char*) e->curr->data;
  179. e->i = 0;
  180. }
  181. return 1;
  182. }
  183. static inline int
  184. enc_literal(Encoder* e, const char* literal, size_t len)
  185. {
  186. if(!enc_ensure(e, len)) {
  187. return 0;
  188. }
  189. memcpy(&(e->p[e->i]), literal, len);
  190. e->i += len;
  191. e->count++;
  192. return 1;
  193. }
  194. static inline int
  195. enc_string(Encoder* e, ERL_NIF_TERM val)
  196. {
  197. static const int MAX_ESCAPE_LEN = 12;
  198. ErlNifBinary bin;
  199. char atom[512];
  200. unsigned char* data;
  201. size_t size;
  202. int esc_len;
  203. int ulen;
  204. int uval;
  205. int i;
  206. if(enif_is_binary(e->env, val)) {
  207. if(!enif_inspect_binary(e->env, val, &bin)) {
  208. return 0;
  209. }
  210. data = bin.data;
  211. size = bin.size;
  212. } else if(enif_is_atom(e->env, val)) {
  213. if(!enif_get_atom(e->env, val, atom, 512, ERL_NIF_LATIN1)) {
  214. return 0;
  215. }
  216. data = (unsigned char*) atom;
  217. size = strlen(atom);
  218. } else {
  219. return 0;
  220. }
  221. /* Reserve space for the first quotation mark and most of the output. */
  222. if(!enc_ensure(e, size + MAX_ESCAPE_LEN + 1)) {
  223. return 0;
  224. }
  225. e->p[e->i++] = '\"';
  226. i = 0;
  227. while(i < size) {
  228. if(!enc_ensure(e, MAX_ESCAPE_LEN)) {
  229. return 0;
  230. }
  231. switch((char) data[i]) {
  232. case '\"':
  233. case '\\':
  234. e->p[e->i++] = '\\';
  235. e->u[e->i++] = data[i];
  236. i++;
  237. continue;
  238. case '\b':
  239. e->p[e->i++] = '\\';
  240. e->p[e->i++] = 'b';
  241. i++;
  242. continue;
  243. case '\f':
  244. e->p[e->i++] = '\\';
  245. e->p[e->i++] = 'f';
  246. i++;
  247. continue;
  248. case '\n':
  249. e->p[e->i++] = '\\';
  250. e->p[e->i++] = 'n';
  251. i++;
  252. continue;
  253. case '\r':
  254. e->p[e->i++] = '\\';
  255. e->p[e->i++] = 'r';
  256. i++;
  257. continue;
  258. case '\t':
  259. e->p[e->i++] = '\\';
  260. e->p[e->i++] = 't';
  261. i++;
  262. continue;
  263. case '/':
  264. if(e->escape_forward_slashes) {
  265. e->p[e->i++] = '\\';
  266. }
  267. e->u[e->i++] = '/';
  268. i++;
  269. continue;
  270. default:
  271. if(data[i] < 0x20) {
  272. ulen = unicode_uescape(data[i], &(e->p[e->i]));
  273. if(ulen < 0) {
  274. return 0;
  275. }
  276. e->i += ulen;
  277. i++;
  278. } else if(data[i] & 0x80) {
  279. ulen = utf8_validate(&(data[i]), size - i);
  280. if (ulen < 0) {
  281. return 0;
  282. } else if (e->uescape) {
  283. uval = utf8_to_unicode(&(data[i]), size-i);
  284. if(uval < 0) {
  285. return 0;
  286. }
  287. esc_len = unicode_uescape(uval, &(e->p[e->i]));
  288. if(esc_len < 0) {
  289. return 0;
  290. }
  291. e->i += esc_len;
  292. } else {
  293. memcpy(&e->u[e->i], &data[i], ulen);
  294. e->i += ulen;
  295. }
  296. i += ulen;
  297. } else {
  298. e->u[e->i++] = data[i++];
  299. }
  300. }
  301. }
  302. if(!enc_ensure(e, 1)) {
  303. return 0;
  304. }
  305. e->p[e->i++] = '\"';
  306. e->count++;
  307. return 1;
  308. }
  309. // From https://www.slideshare.net/andreialexandrescu1/three-optimization-tips-for-c-15708507
  310. #define P01 10
  311. #define P02 100
  312. #define P03 1000
  313. #define P04 10000
  314. #define P05 100000
  315. #define P06 1000000
  316. #define P07 10000000
  317. #define P08 100000000
  318. #define P09 1000000000
  319. #define P10 10000000000
  320. #define P11 100000000000L
  321. #define P12 1000000000000L
  322. int
  323. digits10(ErlNifUInt64 v)
  324. {
  325. if (v < P01) return 1;
  326. if (v < P02) return 2;
  327. if (v < P03) return 3;
  328. if (v < P12) {
  329. if (v < P08) {
  330. if (v < P06) {
  331. if (v < P04) {
  332. return 4;
  333. }
  334. return 5 + (v >= P05);
  335. }
  336. return 7 + (v >= P07);
  337. }
  338. if (v < P10) {
  339. return 9 + (v >= P09);
  340. }
  341. return 11 + (v >= P11);
  342. }
  343. return 12 + digits10(v / P12);
  344. }
  345. unsigned int
  346. u64ToAsciiTable(char *dst, ErlNifUInt64 value)
  347. {
  348. static const char digits[201] =
  349. "0001020304050607080910111213141516171819"
  350. "2021222324252627282930313233343536373839"
  351. "4041424344454647484950515253545556575859"
  352. "6061626364656667686970717273747576777879"
  353. "8081828384858687888990919293949596979899";
  354. const int length = digits10(value);
  355. int next = length - 1;
  356. while (value >= 100) {
  357. const int i = (value % 100) * 2;
  358. value /= 100;
  359. dst[next] = digits[i + 1];
  360. dst[next - 1] = digits[i];
  361. next -= 2;
  362. }
  363. // Handle last 1-2 digits.
  364. if (value < 10) {
  365. dst[next] = '0' + (unsigned int) value;
  366. } else {
  367. const int i = (unsigned int) value * 2;
  368. dst[next] = digits[i + 1];
  369. dst[next - 1] = digits[i];
  370. }
  371. return length;
  372. }
  373. unsigned
  374. i64ToAsciiTable(char *dst, ErlNifSInt64 value)
  375. {
  376. if (value < 0) {
  377. *dst++ = '-';
  378. return 1 + u64ToAsciiTable(dst, -value);
  379. } else {
  380. return u64ToAsciiTable(dst, value);
  381. }
  382. }
  383. static inline int
  384. enc_long(Encoder* e, ErlNifSInt64 val)
  385. {
  386. if(!enc_ensure(e, 32)) {
  387. return 0;
  388. }
  389. e->i += i64ToAsciiTable(&(e->p[e->i]), val);
  390. e->count++;
  391. return 1;
  392. }
  393. static inline int
  394. enc_double(Encoder* e, double val)
  395. {
  396. char* start;
  397. size_t len;
  398. if(!enc_ensure(e, 32)) {
  399. return 0;
  400. }
  401. start = &(e->p[e->i]);
  402. if(!double_to_shortest(start, e->curr->size, &len, val)) {
  403. return 0;
  404. }
  405. e->i += len;
  406. e->count++;
  407. return 1;
  408. }
  409. static inline int
  410. enc_char(Encoder* e, char c)
  411. {
  412. if(!enc_ensure(e, 1)) {
  413. return 0;
  414. }
  415. e->p[e->i++] = c;
  416. return 1;
  417. }
  418. static int
  419. enc_shift(Encoder* e) {
  420. int i;
  421. char* shift;
  422. assert(e->shiftcnt >= 0 && "Invalid shift count.");
  423. shift = shifts[MIN(e->shiftcnt, NUM_SHIFTS-1)];
  424. if(!enc_literal(e, shift + 1, *shift))
  425. return 0;
  426. // Finish the rest of this shift it's it bigger than
  427. // our largest predefined constant.
  428. for(i = NUM_SHIFTS - 1; i < e->shiftcnt; i++) {
  429. if(!enc_literal(e, " ", 2))
  430. return 0;
  431. }
  432. return 1;
  433. }
  434. static inline int
  435. enc_start_object(Encoder* e)
  436. {
  437. e->count++;
  438. e->shiftcnt++;
  439. if(!enc_char(e, '{'))
  440. return 0;
  441. MAYBE_PRETTY(e);
  442. return 1;
  443. }
  444. static inline int
  445. enc_end_object(Encoder* e)
  446. {
  447. e->shiftcnt--;
  448. MAYBE_PRETTY(e);
  449. return enc_char(e, '}');
  450. }
  451. static inline int
  452. enc_start_array(Encoder* e)
  453. {
  454. e->count++;
  455. e->shiftcnt++;
  456. if(!enc_char(e, '['))
  457. return 0;
  458. MAYBE_PRETTY(e);
  459. return 1;
  460. }
  461. static inline int
  462. enc_end_array(Encoder* e)
  463. {
  464. e->shiftcnt--;
  465. MAYBE_PRETTY(e);
  466. return enc_char(e, ']');
  467. }
  468. static inline int
  469. enc_colon(Encoder* e)
  470. {
  471. if(e->pretty)
  472. return enc_literal(e, " : ", 3);
  473. return enc_char(e, ':');
  474. }
  475. static inline int
  476. enc_comma(Encoder* e)
  477. {
  478. if(!enc_char(e, ','))
  479. return 0;
  480. MAYBE_PRETTY(e);
  481. return 1;
  482. }
  483. #if MAP_TYPE_PRESENT
  484. int
  485. enc_map_to_ejson(ErlNifEnv* env, ERL_NIF_TERM map, ERL_NIF_TERM* out)
  486. {
  487. ErlNifMapIterator iter;
  488. size_t size;
  489. ERL_NIF_TERM list;
  490. ERL_NIF_TERM tuple;
  491. ERL_NIF_TERM key;
  492. ERL_NIF_TERM val;
  493. if(!enif_get_map_size(env, map, &size)) {
  494. return 0;
  495. }
  496. list = enif_make_list(env, 0);
  497. if(size == 0) {
  498. *out = enif_make_tuple1(env, list);
  499. return 1;
  500. }
  501. if(!enif_map_iterator_create(env, map, &iter, ERL_NIF_MAP_ITERATOR_HEAD)) {
  502. return 0;
  503. }
  504. do {
  505. if(!enif_map_iterator_get_pair(env, &iter, &key, &val)) {
  506. enif_map_iterator_destroy(env, &iter);
  507. return 0;
  508. }
  509. tuple = enif_make_tuple2(env, key, val);
  510. list = enif_make_list_cell(env, tuple, list);
  511. } while(enif_map_iterator_next(env, &iter));
  512. enif_map_iterator_destroy(env, &iter);
  513. *out = enif_make_tuple1(env, list);
  514. return 1;
  515. }
  516. #endif
  517. ERL_NIF_TERM
  518. encode_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
  519. {
  520. jiffy_st* st = (jiffy_st*) enif_priv_data(env);
  521. Encoder* e;
  522. ERL_NIF_TERM opts;
  523. ERL_NIF_TERM val;
  524. ERL_NIF_TERM tmp_argv[3];
  525. if(argc != 2) {
  526. return enif_make_badarg(env);
  527. }
  528. e = enc_new(env);
  529. if(e == NULL) {
  530. return make_error(st, env, "internal_error");
  531. }
  532. tmp_argv[0] = enif_make_resource(env, e);
  533. tmp_argv[1] = enif_make_tuple1(env, argv[0]);
  534. tmp_argv[2] = enif_make_list(env, 0);
  535. enif_release_resource(e);
  536. opts = argv[1];
  537. if(!enif_is_list(env, opts)) {
  538. return enif_make_badarg(env);
  539. }
  540. while(enif_get_list_cell(env, opts, &val, &opts)) {
  541. if(enif_compare(val, e->atoms->atom_uescape) == 0) {
  542. e->uescape = 1;
  543. } else if(enif_compare(val, e->atoms->atom_pretty) == 0) {
  544. e->pretty = 1;
  545. } else if(enif_compare(val, e->atoms->atom_escape_forward_slashes) == 0) {
  546. e->escape_forward_slashes = 1;
  547. } else if(enif_compare(val, e->atoms->atom_use_nil) == 0) {
  548. e->use_nil = 1;
  549. } else if(enif_compare(val, e->atoms->atom_force_utf8) == 0) {
  550. // Ignore, handled in Erlang
  551. } else if(get_bytes_per_iter(env, val, &(e->bytes_per_red))) {
  552. continue;
  553. } else if(get_bytes_per_red(env, val, &(e->bytes_per_red))) {
  554. continue;
  555. } else {
  556. return enif_make_badarg(env);
  557. }
  558. }
  559. return encode_iter(env, 3, tmp_argv);
  560. }
  561. ERL_NIF_TERM
  562. encode_iter(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
  563. {
  564. jiffy_st* st = (jiffy_st*) enif_priv_data(env);
  565. Encoder* e;
  566. TermStack stack;
  567. ERL_NIF_TERM ret = 0;
  568. ERL_NIF_TERM curr;
  569. ERL_NIF_TERM item;
  570. ERL_NIF_TERM saved_stack;
  571. const ERL_NIF_TERM* tuple;
  572. int arity;
  573. ErlNifSInt64 lval;
  574. double dval;
  575. size_t start;
  576. size_t bytes_written = 0;
  577. if(argc != 3) {
  578. return enif_make_badarg(env);
  579. } else if(!enif_get_resource(env, argv[0], st->res_enc, (void**) &e)) {
  580. return enif_make_badarg(env);
  581. } else if(!enif_is_list(env, argv[2])) {
  582. return enif_make_badarg(env);
  583. }
  584. if(!enc_init(e, env)) {
  585. return enif_make_badarg(env);
  586. }
  587. if(!termstack_restore(env, argv[1], &stack)) {
  588. return enif_make_badarg(env);
  589. }
  590. e->iolist = argv[2];
  591. start = e->iosize + e->i;
  592. while(!termstack_is_empty(&stack)) {
  593. bytes_written += (e->iosize + e->i) - start;
  594. if(should_yield(env, &bytes_written, e->bytes_per_red)) {
  595. saved_stack = termstack_save(env, &stack);
  596. termstack_destroy(&stack);
  597. return enif_make_tuple4(
  598. env,
  599. st->atom_iter,
  600. argv[0],
  601. saved_stack,
  602. e->iolist
  603. );
  604. }
  605. curr = termstack_pop(&stack);
  606. if(enif_is_identical(curr, e->atoms->ref_object)) {
  607. curr = termstack_pop(&stack);
  608. if(!enif_get_list_cell(env, curr, &item, &curr)) {
  609. if(!enc_end_object(e)) {
  610. ret = enc_error(e, "internal_error");
  611. goto done;
  612. }
  613. continue;
  614. }
  615. if(!enif_get_tuple(env, item, &arity, &tuple)) {
  616. ret = enc_obj_error(e, "invalid_object_member", item);
  617. goto done;
  618. }
  619. if(arity != 2) {
  620. ret = enc_obj_error(e, "invalid_object_member_arity", item);
  621. goto done;
  622. }
  623. if(!enc_comma(e)) {
  624. ret = enc_error(e, "internal_error");
  625. goto done;
  626. }
  627. if(!enc_string(e, tuple[0])) {
  628. ret = enc_obj_error(e, "invalid_object_member_key", tuple[0]);
  629. goto done;
  630. }
  631. if(!enc_colon(e)) {
  632. ret = enc_error(e, "internal_error");
  633. goto done;
  634. }
  635. termstack_push(&stack, curr);
  636. termstack_push(&stack, e->atoms->ref_object);
  637. termstack_push(&stack, tuple[1]);
  638. } else if(enif_is_identical(curr, e->atoms->ref_array)) {
  639. curr = termstack_pop(&stack);
  640. if(!enif_get_list_cell(env, curr, &item, &curr)) {
  641. if(!enc_end_array(e)) {
  642. ret = enc_error(e, "internal_error");
  643. goto done;
  644. }
  645. continue;
  646. }
  647. if(!enc_comma(e)) {
  648. ret = enc_error(e, "internal_error");
  649. goto done;
  650. }
  651. termstack_push(&stack, curr);
  652. termstack_push(&stack, e->atoms->ref_array);
  653. termstack_push(&stack, item);
  654. } else if(enif_compare(curr, e->atoms->atom_null) == 0) {
  655. if(!enc_literal(e, "null", 4)) {
  656. ret = enc_error(e, "null");
  657. goto done;
  658. }
  659. } else if(e->use_nil && enif_compare(curr, e->atoms->atom_nil) == 0) {
  660. if(!enc_literal(e, "null", 4)) {
  661. ret = enc_error(e, "null");
  662. goto done;
  663. }
  664. } else if(enif_compare(curr, e->atoms->atom_true) == 0) {
  665. if(!enc_literal(e, "true", 4)) {
  666. ret = enc_error(e, "true");
  667. goto done;
  668. }
  669. } else if(enif_compare(curr, e->atoms->atom_false) == 0) {
  670. if(!enc_literal(e, "false", 5)) {
  671. ret = enc_error(e, "false");
  672. goto done;
  673. }
  674. } else if(enif_is_binary(env, curr)) {
  675. if(!enc_string(e, curr)) {
  676. ret = enc_obj_error(e, "invalid_string", curr);
  677. goto done;
  678. }
  679. } else if(enif_is_atom(env, curr)) {
  680. if(!enc_string(e, curr)) {
  681. ret = enc_obj_error(e, "invalid_string", curr);
  682. goto done;
  683. }
  684. } else if(enif_get_int64(env, curr, &lval)) {
  685. if(!enc_long(e, lval)) {
  686. ret = enc_error(e, "internal_error");
  687. goto done;
  688. }
  689. } else if(enif_get_double(env, curr, &dval)) {
  690. if(!enc_double(e, dval)) {
  691. ret = enc_error(e, "internal_error");
  692. goto done;
  693. }
  694. } else if(enif_get_tuple(env, curr, &arity, &tuple)) {
  695. if(arity != 1) {
  696. ret = enc_obj_error(e, "invalid_ejson", curr);
  697. goto done;
  698. }
  699. if(!enif_is_list(env, tuple[0])) {
  700. ret = enc_obj_error(e, "invalid_object", curr);
  701. goto done;
  702. }
  703. if(!enc_start_object(e)) {
  704. ret = enc_error(e, "internal_error");
  705. goto done;
  706. }
  707. if(!enif_get_list_cell(env, tuple[0], &item, &curr)) {
  708. if(!enc_end_object(e)) {
  709. ret = enc_error(e, "internal_error");
  710. goto done;
  711. }
  712. continue;
  713. }
  714. if(!enif_get_tuple(env, item, &arity, &tuple)) {
  715. ret = enc_obj_error(e, "invalid_object_member", item);
  716. goto done;
  717. }
  718. if(arity != 2) {
  719. ret = enc_obj_error(e, "invalid_object_member_arity", item);
  720. goto done;
  721. }
  722. if(!enc_string(e, tuple[0])) {
  723. ret = enc_obj_error(e, "invalid_object_member_key", tuple[0]);
  724. goto done;
  725. }
  726. if(!enc_colon(e)) {
  727. ret = enc_error(e, "internal_error");
  728. goto done;
  729. }
  730. termstack_push(&stack, curr);
  731. termstack_push(&stack, e->atoms->ref_object);
  732. termstack_push(&stack, tuple[1]);
  733. #if MAP_TYPE_PRESENT
  734. } else if(enif_is_map(env, curr)) {
  735. if(!enc_map_to_ejson(env, curr, &curr)) {
  736. ret = enc_error(e, "internal_error");
  737. goto done;
  738. }
  739. termstack_push(&stack, curr);
  740. #endif
  741. } else if(enif_is_list(env, curr)) {
  742. if(!enc_start_array(e)) {
  743. ret = enc_error(e, "internal_error");
  744. goto done;
  745. }
  746. if(!enif_get_list_cell(env, curr, &item, &curr)) {
  747. if(!enc_end_array(e)) {
  748. ret = enc_error(e, "internal_error");
  749. goto done;
  750. }
  751. continue;
  752. }
  753. termstack_push(&stack, curr);
  754. termstack_push(&stack, e->atoms->ref_array);
  755. termstack_push(&stack, item);
  756. } else {
  757. if(!enc_unknown(e, curr)) {
  758. ret = enc_error(e, "internal_error");
  759. goto done;
  760. }
  761. }
  762. }
  763. if(!enc_done(e, &item)) {
  764. ret = enc_error(e, "internal_error");
  765. goto done;
  766. }
  767. if(e->iolen == 0) {
  768. ret = item;
  769. } else {
  770. ret = enif_make_tuple2(env, e->atoms->atom_partial, item);
  771. }
  772. done:
  773. termstack_destroy(&stack);
  774. return ret;
  775. }