Du kannst nicht mehr als 25 Themen auswählen Themen müssen entweder mit einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

990 Zeilen
24 KiB

  1. // This file is part of Jiffy released under the MIT license.
  2. // See the LICENSE file for more information.
  3. #include <assert.h>
  4. #include <stdio.h>
  5. #include <string.h>
  6. #include "erl_nif.h"
  7. #include "jiffy.h"
  8. #define BIN_INC_SIZE 2048
  9. #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
  10. #define MAYBE_PRETTY(e) \
  11. do { \
  12. if(e->pretty) { \
  13. if(!enc_shift(e)) \
  14. return 0; \
  15. } \
  16. } while(0)
  17. #if WINDOWS || WIN32
  18. #define inline __inline
  19. #define snprintf _snprintf
  20. #endif
  21. typedef struct {
  22. ErlNifEnv* env;
  23. jiffy_st* atoms;
  24. size_t bytes_per_red;
  25. int uescape;
  26. int pretty;
  27. int use_nil;
  28. int escape_forward_slashes;
  29. int shiftcnt;
  30. int count;
  31. size_t iolen;
  32. size_t iosize;
  33. ERL_NIF_TERM iolist;
  34. ErlNifBinary bin;
  35. ErlNifBinary* curr;
  36. char* p;
  37. unsigned char* u;
  38. size_t i;
  39. } Encoder;
  40. // String constants for pretty printing.
  41. // Every string starts with its length.
  42. #define NUM_SHIFTS 8
  43. static char* shifts[NUM_SHIFTS] = {
  44. "\x01\n",
  45. "\x03\n ",
  46. "\x05\n ",
  47. "\x07\n ",
  48. "\x09\n ",
  49. "\x0b\n ",
  50. "\x0d\n ",
  51. "\x0f\n "
  52. };
  53. Encoder*
  54. enc_new(ErlNifEnv* env)
  55. {
  56. jiffy_st* st = (jiffy_st*) enif_priv_data(env);
  57. Encoder* e = enif_alloc_resource(st->res_enc, sizeof(Encoder));
  58. e->atoms = st;
  59. e->bytes_per_red = DEFAULT_BYTES_PER_REDUCTION;
  60. e->uescape = 0;
  61. e->pretty = 0;
  62. e->use_nil = 0;
  63. e->escape_forward_slashes = 0;
  64. e->shiftcnt = 0;
  65. e->count = 0;
  66. e->iolen = 0;
  67. e->iosize = 0;
  68. e->curr = &(e->bin);
  69. if(!enif_alloc_binary(BIN_INC_SIZE, e->curr)) {
  70. e->curr = NULL;
  71. enif_release_resource(e);
  72. return NULL;
  73. }
  74. memset(e->curr->data, 0, e->curr->size);
  75. e->p = (char*) e->curr->data;
  76. e->u = (unsigned char*) e->curr->data;
  77. e->i = 0;
  78. return e;
  79. }
  80. int
  81. enc_init(Encoder* e, ErlNifEnv* env)
  82. {
  83. e->env = env;
  84. return 1;
  85. }
  86. void
  87. enc_destroy(ErlNifEnv* env, void* obj)
  88. {
  89. Encoder* e = (Encoder*) obj;
  90. if(e->curr != NULL) {
  91. enif_release_binary(e->curr);
  92. }
  93. }
  94. ERL_NIF_TERM
  95. enc_error(Encoder* e, const char* msg)
  96. {
  97. //assert(0 && msg);
  98. return make_error(e->atoms, e->env, msg);
  99. }
  100. ERL_NIF_TERM
  101. enc_obj_error(Encoder* e, const char* msg, ERL_NIF_TERM obj)
  102. {
  103. return make_obj_error(e->atoms, e->env, msg, obj);
  104. }
  105. static inline int
  106. enc_ensure(Encoder* e, size_t req)
  107. {
  108. size_t need = e->curr->size;
  109. while(req >= (need - e->i)) need <<= 1;
  110. if(need != e->curr->size) {
  111. if(!enif_realloc_binary(e->curr, need)) {
  112. return 0;
  113. }
  114. e->p = (char*) e->curr->data;
  115. e->u = (unsigned char*) e->curr->data;
  116. }
  117. return 1;
  118. }
  119. int
  120. enc_result(Encoder* e, ERL_NIF_TERM* value)
  121. {
  122. if(e->i != e->curr->size) {
  123. if(!enif_realloc_binary(e->curr, e->i)) {
  124. return 0;
  125. }
  126. }
  127. *value = enif_make_binary(e->env, e->curr);
  128. e->curr = NULL;
  129. return 1;
  130. }
  131. int
  132. enc_done(Encoder* e, ERL_NIF_TERM* value)
  133. {
  134. ERL_NIF_TERM last;
  135. if(e->iolen == 0) {
  136. return enc_result(e, value);
  137. }
  138. if(e->i > 0 ) {
  139. if(!enc_result(e, &last)) {
  140. return 0;
  141. }
  142. e->iolist = enif_make_list_cell(e->env, last, e->iolist);
  143. e->iolen++;
  144. }
  145. *value = e->iolist;
  146. return 1;
  147. }
  148. #define SMALL_TERMSTACK_SIZE 16
  149. typedef struct {
  150. ERL_NIF_TERM *elements;
  151. size_t size;
  152. size_t top;
  153. ERL_NIF_TERM __default_elements[SMALL_TERMSTACK_SIZE];
  154. } TermStack;
  155. static inline void
  156. termstack_push(TermStack *stack, ERL_NIF_TERM term)
  157. {
  158. if(stack->top == stack->size) {
  159. size_t new_size = stack->size * 2;
  160. if (stack->elements == &stack->__default_elements[0]) {
  161. stack->elements = enif_alloc(new_size * sizeof(ERL_NIF_TERM));
  162. stack->size = new_size;
  163. } else {
  164. stack->elements = enif_realloc(stack->elements,
  165. new_size * sizeof(ERL_NIF_TERM));
  166. stack->size = new_size;
  167. }
  168. }
  169. assert(stack->top < stack->size);
  170. stack->elements[stack->top++] = term;
  171. }
  172. static inline ERL_NIF_TERM
  173. termstack_pop(TermStack *stack)
  174. {
  175. assert(stack->top > 0 && stack->top <= stack->size);
  176. return stack->elements[--stack->top];
  177. }
  178. static inline int
  179. termstack_is_empty(TermStack *stack)
  180. {
  181. return stack->top == 0;
  182. }
  183. ERL_NIF_TERM termstack_save(ErlNifEnv *env, TermStack *stack)
  184. {
  185. return enif_make_tuple_from_array(env, stack->elements, stack->top);
  186. }
  187. int termstack_restore(ErlNifEnv *env, ERL_NIF_TERM from, TermStack *stack)
  188. {
  189. const ERL_NIF_TERM *elements;
  190. int arity;
  191. if(enif_get_tuple(env, from, &arity, &elements)) {
  192. stack->top = arity;
  193. if(arity <= SMALL_TERMSTACK_SIZE) {
  194. stack->elements = &stack->__default_elements[0];
  195. stack->size = SMALL_TERMSTACK_SIZE;
  196. } else {
  197. stack->size = arity * 2;
  198. stack->elements = enif_alloc(stack->size * sizeof(ERL_NIF_TERM));
  199. if(!stack->elements) {
  200. return 0;
  201. }
  202. }
  203. memcpy(stack->elements, elements, arity * sizeof(ERL_NIF_TERM));
  204. return 1;
  205. }
  206. return 0;
  207. }
  208. static void
  209. termstack_destroy(TermStack *stack)
  210. {
  211. if(stack->elements != &stack->__default_elements[0]) {
  212. enif_free(stack->elements);
  213. }
  214. }
  215. static inline int
  216. enc_unknown(Encoder* e, ERL_NIF_TERM value)
  217. {
  218. ErlNifBinary* bin = e->curr;
  219. ERL_NIF_TERM curr;
  220. if(e->i > 0) {
  221. if(!enc_result(e, &curr)) {
  222. return 0;
  223. }
  224. e->iolist = enif_make_list_cell(e->env, curr, e->iolist);
  225. e->iolen++;
  226. }
  227. e->iolist = enif_make_list_cell(e->env, value, e->iolist);
  228. e->iolen++;
  229. // Track the total number of bytes produced before
  230. // splitting our IO buffer. We add 16 to this value
  231. // as a rough estimate of the number of bytes that
  232. // a bignum might produce when encoded.
  233. e->iosize += e->i + 16;
  234. // Reinitialize our binary for the next buffer if we
  235. // used any data in the buffer. If we haven't used any
  236. // bytes in the buffer then we can safely reuse it
  237. // for anything following the unknown value.
  238. if(e->i > 0) {
  239. e->curr = bin;
  240. if(!enif_alloc_binary(BIN_INC_SIZE, e->curr)) {
  241. return 0;
  242. }
  243. memset(e->curr->data, 0, e->curr->size);
  244. e->p = (char*) e->curr->data;
  245. e->u = (unsigned char*) e->curr->data;
  246. e->i = 0;
  247. }
  248. return 1;
  249. }
  250. static inline int
  251. enc_literal(Encoder* e, const char* literal, size_t len)
  252. {
  253. if(!enc_ensure(e, len)) {
  254. return 0;
  255. }
  256. memcpy(&(e->p[e->i]), literal, len);
  257. e->i += len;
  258. e->count++;
  259. return 1;
  260. }
  261. static inline int
  262. enc_string(Encoder* e, ERL_NIF_TERM val)
  263. {
  264. static const int MAX_ESCAPE_LEN = 12;
  265. ErlNifBinary bin;
  266. char atom[512];
  267. unsigned char* data;
  268. size_t size;
  269. int ulen;
  270. int uval;
  271. int i;
  272. if(enif_is_binary(e->env, val)) {
  273. if(!enif_inspect_binary(e->env, val, &bin)) {
  274. return 0;
  275. }
  276. data = bin.data;
  277. size = bin.size;
  278. } else if(enif_is_atom(e->env, val)) {
  279. if(!enif_get_atom(e->env, val, atom, 512, ERL_NIF_LATIN1)) {
  280. return 0;
  281. }
  282. data = (unsigned char*) atom;
  283. size = strlen(atom);
  284. } else {
  285. return 0;
  286. }
  287. /* Reserve space for the first quotation mark and most of the output. */
  288. if(!enc_ensure(e, size + MAX_ESCAPE_LEN + 1)) {
  289. return 0;
  290. }
  291. e->p[e->i++] = '\"';
  292. i = 0;
  293. while(i < size) {
  294. if(!enc_ensure(e, MAX_ESCAPE_LEN)) {
  295. return 0;
  296. }
  297. switch((char) data[i]) {
  298. case '\"':
  299. case '\\':
  300. e->p[e->i++] = '\\';
  301. e->u[e->i++] = data[i];
  302. i++;
  303. continue;
  304. case '\b':
  305. e->p[e->i++] = '\\';
  306. e->p[e->i++] = 'b';
  307. i++;
  308. continue;
  309. case '\f':
  310. e->p[e->i++] = '\\';
  311. e->p[e->i++] = 'f';
  312. i++;
  313. continue;
  314. case '\n':
  315. e->p[e->i++] = '\\';
  316. e->p[e->i++] = 'n';
  317. i++;
  318. continue;
  319. case '\r':
  320. e->p[e->i++] = '\\';
  321. e->p[e->i++] = 'r';
  322. i++;
  323. continue;
  324. case '\t':
  325. e->p[e->i++] = '\\';
  326. e->p[e->i++] = 't';
  327. i++;
  328. continue;
  329. case '/':
  330. if(e->escape_forward_slashes) {
  331. e->p[e->i++] = '\\';
  332. }
  333. e->u[e->i++] = '/';
  334. i++;
  335. continue;
  336. default:
  337. if(data[i] < 0x20) {
  338. ulen = unicode_uescape(data[i], &(e->p[e->i]));
  339. if(ulen < 0) {
  340. return 0;
  341. }
  342. e->i += ulen;
  343. i++;
  344. } else if(data[i] & 0x80) {
  345. ulen = utf8_validate(&(data[i]), size - i);
  346. if (ulen < 0) {
  347. return 0;
  348. } else if (e->uescape) {
  349. int esc_len;
  350. uval = utf8_to_unicode(&(data[i]), size-i);
  351. if(uval < 0) {
  352. return 0;
  353. }
  354. esc_len = unicode_uescape(uval, &(e->p[e->i]));
  355. if(esc_len < 0) {
  356. return 0;
  357. }
  358. e->i += esc_len;
  359. } else {
  360. memcpy(&e->u[e->i], &data[i], ulen);
  361. e->i += ulen;
  362. }
  363. i += ulen;
  364. } else {
  365. e->u[e->i++] = data[i++];
  366. }
  367. }
  368. }
  369. if(!enc_ensure(e, 1)) {
  370. return 0;
  371. }
  372. e->p[e->i++] = '\"';
  373. e->count++;
  374. return 1;
  375. }
  376. // From https://www.slideshare.net/andreialexandrescu1/three-optimization-tips-for-c-15708507
  377. #define P01 10
  378. #define P02 100
  379. #define P03 1000
  380. #define P04 10000
  381. #define P05 100000
  382. #define P06 1000000
  383. #define P07 10000000
  384. #define P08 100000000
  385. #define P09 1000000000
  386. #define P10 10000000000
  387. #define P11 100000000000L
  388. #define P12 1000000000000L
  389. int
  390. digits10(ErlNifUInt64 v)
  391. {
  392. if (v < P01) return 1;
  393. if (v < P02) return 2;
  394. if (v < P03) return 3;
  395. if (v < P12) {
  396. if (v < P08) {
  397. if (v < P06) {
  398. if (v < P04) return 4;
  399. return 5 + (v >= P05);
  400. }
  401. return 7 + (v >= P07);
  402. }
  403. if (v < P10) {
  404. return 9 + (v >= P09);
  405. }
  406. return 11 + (v >= P11);
  407. }
  408. return 12 + digits10(v / P12);
  409. }
  410. unsigned int
  411. u64ToAsciiTable(char *dst, ErlNifUInt64 value)
  412. {
  413. static const char digits[201] =
  414. "0001020304050607080910111213141516171819"
  415. "2021222324252627282930313233343536373839"
  416. "4041424344454647484950515253545556575859"
  417. "6061626364656667686970717273747576777879"
  418. "8081828384858687888990919293949596979899";
  419. const int length = digits10(value);
  420. int next = length - 1;
  421. while (value >= 100) {
  422. const int i = (value % 100) * 2;
  423. value /= 100;
  424. dst[next] = digits[i + 1];
  425. dst[next - 1] = digits[i];
  426. next -= 2;
  427. }
  428. // Handle last 1-2 digits.
  429. if (value < 10) {
  430. dst[next] = '0' + (ErlNifUInt) value;
  431. } else {
  432. const int i = (ErlNifUInt) value * 2;
  433. dst[next] = digits[i + 1];
  434. dst[next - 1] = digits[i];
  435. }
  436. return length;
  437. }
  438. unsigned
  439. i64ToAsciiTable(char *dst, ErlNifSInt64 value)
  440. {
  441. if (value < 0) {
  442. *dst++ = '-';
  443. return 1 + u64ToAsciiTable(dst, -value);
  444. } else {
  445. return u64ToAsciiTable(dst, value);
  446. }
  447. }
  448. static inline int
  449. enc_long(Encoder* e, ErlNifSInt64 val)
  450. {
  451. if(!enc_ensure(e, 32)) {
  452. return 0;
  453. }
  454. e->i += i64ToAsciiTable(&(e->p[e->i]), val);
  455. e->count++;
  456. return 1;
  457. }
  458. static inline int
  459. enc_double(Encoder* e, double val)
  460. {
  461. char* start;
  462. size_t len;
  463. if(!enc_ensure(e, 32)) {
  464. return 0;
  465. }
  466. start = &(e->p[e->i]);
  467. if(!double_to_shortest(start, e->curr->size, &len, val)) {
  468. return 0;
  469. }
  470. e->i += len;
  471. e->count++;
  472. return 1;
  473. }
  474. static inline int
  475. enc_char(Encoder* e, char c)
  476. {
  477. if(!enc_ensure(e, 1)) {
  478. return 0;
  479. }
  480. e->p[e->i++] = c;
  481. return 1;
  482. }
  483. static int
  484. enc_shift(Encoder* e) {
  485. int i;
  486. char* shift;
  487. assert(e->shiftcnt >= 0 && "Invalid shift count.");
  488. shift = shifts[MIN(e->shiftcnt, NUM_SHIFTS-1)];
  489. if(!enc_literal(e, shift + 1, *shift))
  490. return 0;
  491. // Finish the rest of this shift it's it bigger than
  492. // our largest predefined constant.
  493. for(i = NUM_SHIFTS - 1; i < e->shiftcnt; i++) {
  494. if(!enc_literal(e, " ", 2))
  495. return 0;
  496. }
  497. return 1;
  498. }
  499. static inline int
  500. enc_start_object(Encoder* e)
  501. {
  502. e->count++;
  503. e->shiftcnt++;
  504. if(!enc_char(e, '{'))
  505. return 0;
  506. MAYBE_PRETTY(e);
  507. return 1;
  508. }
  509. static inline int
  510. enc_end_object(Encoder* e)
  511. {
  512. e->shiftcnt--;
  513. MAYBE_PRETTY(e);
  514. return enc_char(e, '}');
  515. }
  516. static inline int
  517. enc_start_array(Encoder* e)
  518. {
  519. e->count++;
  520. e->shiftcnt++;
  521. if(!enc_char(e, '['))
  522. return 0;
  523. MAYBE_PRETTY(e);
  524. return 1;
  525. }
  526. static inline int
  527. enc_end_array(Encoder* e)
  528. {
  529. e->shiftcnt--;
  530. MAYBE_PRETTY(e);
  531. return enc_char(e, ']');
  532. }
  533. static inline int
  534. enc_colon(Encoder* e)
  535. {
  536. if(e->pretty)
  537. return enc_literal(e, " : ", 3);
  538. return enc_char(e, ':');
  539. }
  540. static inline int
  541. enc_comma(Encoder* e)
  542. {
  543. if(!enc_char(e, ','))
  544. return 0;
  545. MAYBE_PRETTY(e);
  546. return 1;
  547. }
  548. #if MAP_TYPE_PRESENT
  549. int
  550. enc_map_to_ejson(ErlNifEnv* env, ERL_NIF_TERM map, ERL_NIF_TERM* out)
  551. {
  552. ErlNifMapIterator iter;
  553. size_t size;
  554. ERL_NIF_TERM list;
  555. ERL_NIF_TERM tuple;
  556. ERL_NIF_TERM key;
  557. ERL_NIF_TERM val;
  558. if(!enif_get_map_size(env, map, &size)) {
  559. return 0;
  560. }
  561. list = enif_make_list(env, 0);
  562. if(size == 0) {
  563. *out = enif_make_tuple1(env, list);
  564. return 1;
  565. }
  566. if(!enif_map_iterator_create(env, map, &iter, ERL_NIF_MAP_ITERATOR_HEAD)) {
  567. return 0;
  568. }
  569. do {
  570. if(!enif_map_iterator_get_pair(env, &iter, &key, &val)) {
  571. enif_map_iterator_destroy(env, &iter);
  572. return 0;
  573. }
  574. tuple = enif_make_tuple2(env, key, val);
  575. list = enif_make_list_cell(env, tuple, list);
  576. } while(enif_map_iterator_next(env, &iter));
  577. enif_map_iterator_destroy(env, &iter);
  578. *out = enif_make_tuple1(env, list);
  579. return 1;
  580. }
  581. #endif
  582. ERL_NIF_TERM
  583. encode_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
  584. {
  585. jiffy_st* st = (jiffy_st*) enif_priv_data(env);
  586. Encoder* e;
  587. ERL_NIF_TERM opts;
  588. ERL_NIF_TERM val;
  589. ERL_NIF_TERM tmp_argv[3];
  590. if(argc != 2) {
  591. return enif_make_badarg(env);
  592. }
  593. e = enc_new(env);
  594. if(e == NULL) {
  595. return make_error(st, env, "internal_error");
  596. }
  597. tmp_argv[0] = enif_make_resource(env, e);
  598. tmp_argv[1] = enif_make_tuple1(env, argv[0]);
  599. tmp_argv[2] = enif_make_list(env, 0);
  600. enif_release_resource(e);
  601. opts = argv[1];
  602. if(!enif_is_list(env, opts)) {
  603. return enif_make_badarg(env);
  604. }
  605. while(enif_get_list_cell(env, opts, &val, &opts)) {
  606. if(enif_is_identical(val, e->atoms->atom_uescape)) {
  607. e->uescape = 1;
  608. } else if(enif_is_identical(val, e->atoms->atom_pretty)) {
  609. e->pretty = 1;
  610. } else if(enif_is_identical(val, e->atoms->atom_escape_forward_slashes)) {
  611. e->escape_forward_slashes = 1;
  612. } else if(enif_is_identical(val, e->atoms->atom_use_nil)) {
  613. e->use_nil = 1;
  614. } else if(enif_is_identical(val, e->atoms->atom_force_utf8)) {
  615. // Ignore, handled in Erlang
  616. } else if(get_bytes_per_iter(env, val, &(e->bytes_per_red))) {
  617. continue;
  618. } else if(get_bytes_per_red(env, val, &(e->bytes_per_red))) {
  619. continue;
  620. } else {
  621. return enif_make_badarg(env);
  622. }
  623. }
  624. return encode_iter(env, 3, tmp_argv);
  625. }
  626. ERL_NIF_TERM
  627. encode_iter(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
  628. {
  629. TermStack stack;
  630. Encoder* e;
  631. jiffy_st* st = (jiffy_st*) enif_priv_data(env);
  632. ERL_NIF_TERM ret = 0;
  633. ERL_NIF_TERM curr;
  634. ERL_NIF_TERM item;
  635. const ERL_NIF_TERM* tuple;
  636. int arity;
  637. ErlNifSInt64 lval;
  638. double dval;
  639. size_t start;
  640. size_t bytes_written = 0;
  641. if(argc != 3) {
  642. return enif_make_badarg(env);
  643. } else if(!enif_get_resource(env, argv[0], st->res_enc, (void**) &e)) {
  644. return enif_make_badarg(env);
  645. } else if(!enif_is_list(env, argv[2])) {
  646. return enif_make_badarg(env);
  647. }
  648. if(!enc_init(e, env)) {
  649. return enif_make_badarg(env);
  650. }
  651. if(!termstack_restore(env, argv[1], &stack)) {
  652. return enif_make_badarg(env);
  653. }
  654. e->iolist = argv[2];
  655. start = e->iosize + e->i;
  656. while(!termstack_is_empty(&stack)) {
  657. bytes_written += (e->iosize + e->i) - start;
  658. if(should_yield(env, &bytes_written, e->bytes_per_red)) {
  659. ERL_NIF_TERM saved_stack = termstack_save(env, &stack);
  660. termstack_destroy(&stack);
  661. return enif_make_tuple4(
  662. env,
  663. st->atom_iter,
  664. argv[0],
  665. saved_stack,
  666. e->iolist
  667. );
  668. }
  669. curr = termstack_pop(&stack);
  670. if(enif_is_identical(curr, e->atoms->ref_object)) {
  671. curr = termstack_pop(&stack);
  672. if(!enif_get_list_cell(env, curr, &item, &curr)) {
  673. if(!enc_end_object(e)) {
  674. ret = enc_error(e, "internal_error");
  675. goto done;
  676. }
  677. continue;
  678. }
  679. if(!enif_get_tuple(env, item, &arity, &tuple)) {
  680. ret = enc_obj_error(e, "invalid_object_member", item);
  681. goto done;
  682. }
  683. if(arity != 2) {
  684. ret = enc_obj_error(e, "invalid_object_member_arity", item);
  685. goto done;
  686. }
  687. if(!enc_comma(e)) {
  688. ret = enc_error(e, "internal_error");
  689. goto done;
  690. }
  691. if(!enc_string(e, tuple[0])) {
  692. ret = enc_obj_error(e, "invalid_object_member_key", tuple[0]);
  693. goto done;
  694. }
  695. if(!enc_colon(e)) {
  696. ret = enc_error(e, "internal_error");
  697. goto done;
  698. }
  699. termstack_push(&stack, curr);
  700. termstack_push(&stack, e->atoms->ref_object);
  701. termstack_push(&stack, tuple[1]);
  702. } else if(enif_is_identical(curr, e->atoms->ref_array)) {
  703. curr = termstack_pop(&stack);
  704. if(!enif_get_list_cell(env, curr, &item, &curr)) {
  705. if(!enc_end_array(e)) {
  706. ret = enc_error(e, "internal_error");
  707. goto done;
  708. }
  709. continue;
  710. }
  711. if(!enc_comma(e)) {
  712. ret = enc_error(e, "internal_error");
  713. goto done;
  714. }
  715. termstack_push(&stack, curr);
  716. termstack_push(&stack, e->atoms->ref_array);
  717. termstack_push(&stack, item);
  718. } else if(enif_is_identical(curr, e->atoms->atom_null)) {
  719. if(!enc_literal(e, "null", 4)) {
  720. ret = enc_error(e, "null");
  721. goto done;
  722. }
  723. } else if(e->use_nil && enif_is_identical(curr, e->atoms->atom_nil)) {
  724. if(!enc_literal(e, "null", 4)) {
  725. ret = enc_error(e, "null");
  726. goto done;
  727. }
  728. } else if(enif_is_identical(curr, e->atoms->atom_true)) {
  729. if(!enc_literal(e, "true", 4)) {
  730. ret = enc_error(e, "true");
  731. goto done;
  732. }
  733. } else if(enif_is_identical(curr, e->atoms->atom_false)) {
  734. if(!enc_literal(e, "false", 5)) {
  735. ret = enc_error(e, "false");
  736. goto done;
  737. }
  738. } else if(enif_is_binary(env, curr)) {
  739. if(!enc_string(e, curr)) {
  740. ret = enc_obj_error(e, "invalid_string", curr);
  741. goto done;
  742. }
  743. } else if(enif_is_atom(env, curr)) {
  744. if(!enc_string(e, curr)) {
  745. ret = enc_obj_error(e, "invalid_string", curr);
  746. goto done;
  747. }
  748. } else if(enif_get_int64(env, curr, &lval)) {
  749. if(!enc_long(e, lval)) {
  750. ret = enc_error(e, "internal_error");
  751. goto done;
  752. }
  753. } else if(enif_get_double(env, curr, &dval)) {
  754. if(!enc_double(e, dval)) {
  755. ret = enc_error(e, "internal_error");
  756. goto done;
  757. }
  758. } else if(enif_get_tuple(env, curr, &arity, &tuple)) {
  759. if(arity != 1) {
  760. ret = enc_obj_error(e, "invalid_ejson", curr);
  761. goto done;
  762. }
  763. if(!enif_is_list(env, tuple[0])) {
  764. ret = enc_obj_error(e, "invalid_object", curr);
  765. goto done;
  766. }
  767. if(!enc_start_object(e)) {
  768. ret = enc_error(e, "internal_error");
  769. goto done;
  770. }
  771. if(!enif_get_list_cell(env, tuple[0], &item, &curr)) {
  772. if(!enc_end_object(e)) {
  773. ret = enc_error(e, "internal_error");
  774. goto done;
  775. }
  776. continue;
  777. }
  778. if(!enif_get_tuple(env, item, &arity, &tuple)) {
  779. ret = enc_obj_error(e, "invalid_object_member", item);
  780. goto done;
  781. }
  782. if(arity != 2) {
  783. ret = enc_obj_error(e, "invalid_object_member_arity", item);
  784. goto done;
  785. }
  786. if(!enc_string(e, tuple[0])) {
  787. ret = enc_obj_error(e, "invalid_object_member_key", tuple[0]);
  788. goto done;
  789. }
  790. if(!enc_colon(e)) {
  791. ret = enc_error(e, "internal_error");
  792. goto done;
  793. }
  794. termstack_push(&stack, curr);
  795. termstack_push(&stack, e->atoms->ref_object);
  796. termstack_push(&stack, tuple[1]);
  797. #if MAP_TYPE_PRESENT
  798. } else if(enif_is_map(env, curr)) {
  799. if(!enc_map_to_ejson(env, curr, &curr)) {
  800. ret = enc_error(e, "internal_error");
  801. goto done;
  802. }
  803. termstack_push(&stack, curr);
  804. #endif
  805. } else if(enif_is_list(env, curr)) {
  806. if(!enc_start_array(e)) {
  807. ret = enc_error(e, "internal_error");
  808. goto done;
  809. }
  810. if(!enif_get_list_cell(env, curr, &item, &curr)) {
  811. if(!enc_end_array(e)) {
  812. ret = enc_error(e, "internal_error");
  813. goto done;
  814. }
  815. continue;
  816. }
  817. termstack_push(&stack, curr);
  818. termstack_push(&stack, e->atoms->ref_array);
  819. termstack_push(&stack, item);
  820. } else {
  821. if(!enc_unknown(e, curr)) {
  822. ret = enc_error(e, "internal_error");
  823. goto done;
  824. }
  825. }
  826. }
  827. if(!enc_done(e, &item)) {
  828. ret = enc_error(e, "internal_error");
  829. goto done;
  830. }
  831. if(e->iolen == 0) {
  832. ret = item;
  833. } else {
  834. ret = enif_make_tuple2(env, e->atoms->atom_partial, item);
  835. }
  836. done:
  837. termstack_destroy(&stack);
  838. return ret;
  839. }