You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1015 lines
24 KiB

преди 13 години
преди 13 години
преди 13 години
преди 13 години
преди 13 години
преди 13 години
преди 13 години
  1. // This file is part of Jiffy released under the MIT license.
  2. // See the LICENSE file for more information.
  3. #include <assert.h>
  4. #include <stdio.h>
  5. #include <string.h>
  6. #include "erl_nif.h"
  7. #include "jiffy.h"
  8. #define BIN_INC_SIZE 2048
  9. #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
  10. #define MAYBE_PRETTY(e) \
  11. do { \
  12. if(e->pretty) { \
  13. if(!enc_shift(e)) \
  14. return 0; \
  15. } \
  16. } while(0)
  17. #if WINDOWS || WIN32
  18. #define inline __inline
  19. #define snprintf _snprintf
  20. #endif
  21. typedef struct {
  22. ErlNifEnv* env;
  23. jiffy_st* atoms;
  24. size_t bytes_per_red;
  25. int uescape;
  26. int pretty;
  27. int use_nil;
  28. int escape_forward_slashes;
  29. int shiftcnt;
  30. int count;
  31. size_t iosize;
  32. ERL_NIF_TERM iolist;
  33. int partial_output;
  34. ErlNifBinary buffer;
  35. int have_buffer;
  36. unsigned char* p;
  37. size_t i;
  38. } Encoder;
  39. // String constants for pretty printing.
  40. // Every string starts with its length.
  41. #define NUM_SHIFTS 8
  42. static char* shifts[NUM_SHIFTS] = {
  43. "\x01\n",
  44. "\x03\n ",
  45. "\x05\n ",
  46. "\x07\n ",
  47. "\x09\n ",
  48. "\x0b\n ",
  49. "\x0d\n ",
  50. "\x0f\n "
  51. };
  52. Encoder*
  53. enc_new(ErlNifEnv* env)
  54. {
  55. jiffy_st* st = (jiffy_st*) enif_priv_data(env);
  56. Encoder* e = enif_alloc_resource(st->res_enc, sizeof(Encoder));
  57. e->atoms = st;
  58. e->bytes_per_red = DEFAULT_BYTES_PER_REDUCTION;
  59. e->uescape = 0;
  60. e->pretty = 0;
  61. e->use_nil = 0;
  62. e->escape_forward_slashes = 0;
  63. e->shiftcnt = 0;
  64. e->count = 0;
  65. e->iosize = 0;
  66. e->iolist = enif_make_list(env, 0);
  67. e->partial_output = 0;
  68. if(!enif_alloc_binary(BIN_INC_SIZE, &e->buffer)) {
  69. enif_release_resource(e);
  70. return NULL;
  71. }
  72. e->have_buffer = 1;
  73. e->p = e->buffer.data;
  74. e->i = 0;
  75. return e;
  76. }
  77. int
  78. enc_init(Encoder* e, ErlNifEnv* env)
  79. {
  80. e->env = env;
  81. return 1;
  82. }
  83. void
  84. enc_destroy(ErlNifEnv* env, void* obj)
  85. {
  86. Encoder* e = (Encoder*) obj;
  87. if(e->have_buffer) {
  88. enif_release_binary(&e->buffer);
  89. }
  90. }
  91. ERL_NIF_TERM
  92. enc_error(Encoder* e, const char* msg)
  93. {
  94. //assert(0 && msg);
  95. return make_error(e->atoms, e->env, msg);
  96. }
  97. ERL_NIF_TERM
  98. enc_obj_error(Encoder* e, const char* msg, ERL_NIF_TERM obj)
  99. {
  100. return make_obj_error(e->atoms, e->env, msg, obj);
  101. }
  102. int
  103. enc_flush(Encoder* e)
  104. {
  105. ERL_NIF_TERM bin;
  106. if(e->i == 0) {
  107. return 1;
  108. }
  109. if(e->i < e->buffer.size) {
  110. if(!enif_realloc_binary(&e->buffer, e->i)) {
  111. return 0;
  112. }
  113. }
  114. bin = enif_make_binary(e->env, &e->buffer);
  115. e->have_buffer = 0;
  116. e->iolist = enif_make_list_cell(e->env, bin, e->iolist);
  117. e->iosize += e->i;
  118. return 1;
  119. }
  120. static inline int
  121. enc_ensure(Encoder* e, size_t req)
  122. {
  123. size_t new_size = BIN_INC_SIZE;
  124. if(req < (e->buffer.size - e->i)) {
  125. return 1;
  126. }
  127. if(!enc_flush(e)) {
  128. return 0;
  129. }
  130. for(new_size = BIN_INC_SIZE; new_size < req; new_size <<= 1);
  131. if(!enif_alloc_binary(new_size, &e->buffer)) {
  132. return 0;
  133. }
  134. e->have_buffer = 1;
  135. e->p = e->buffer.data;
  136. e->i = 0;
  137. return 1;
  138. }
  139. #define SMALL_TERMSTACK_SIZE 16
  140. typedef struct {
  141. ERL_NIF_TERM *elements;
  142. size_t size;
  143. size_t top;
  144. ERL_NIF_TERM __default_elements[SMALL_TERMSTACK_SIZE];
  145. } TermStack;
  146. static inline void
  147. termstack_push(TermStack *stack, ERL_NIF_TERM term)
  148. {
  149. if(stack->top == stack->size) {
  150. size_t new_size = stack->size * 2;
  151. if (stack->elements == &stack->__default_elements[0]) {
  152. stack->elements = enif_alloc(new_size * sizeof(ERL_NIF_TERM));
  153. stack->size = new_size;
  154. } else {
  155. stack->elements = enif_realloc(stack->elements,
  156. new_size * sizeof(ERL_NIF_TERM));
  157. stack->size = new_size;
  158. }
  159. }
  160. assert(stack->top < stack->size);
  161. stack->elements[stack->top++] = term;
  162. }
  163. static inline ERL_NIF_TERM
  164. termstack_pop(TermStack *stack)
  165. {
  166. assert(stack->top > 0 && stack->top <= stack->size);
  167. return stack->elements[--stack->top];
  168. }
  169. static inline int
  170. termstack_is_empty(TermStack *stack)
  171. {
  172. return stack->top == 0;
  173. }
  174. ERL_NIF_TERM termstack_save(ErlNifEnv *env, TermStack *stack)
  175. {
  176. return enif_make_tuple_from_array(env, stack->elements, stack->top);
  177. }
  178. int termstack_restore(ErlNifEnv *env, ERL_NIF_TERM from, TermStack *stack)
  179. {
  180. const ERL_NIF_TERM *elements;
  181. int arity;
  182. if(enif_get_tuple(env, from, &arity, &elements)) {
  183. stack->top = arity;
  184. if(arity <= SMALL_TERMSTACK_SIZE) {
  185. stack->elements = &stack->__default_elements[0];
  186. stack->size = SMALL_TERMSTACK_SIZE;
  187. } else {
  188. stack->size = arity * 2;
  189. stack->elements = enif_alloc(stack->size * sizeof(ERL_NIF_TERM));
  190. if(!stack->elements) {
  191. return 0;
  192. }
  193. }
  194. memcpy(stack->elements, elements, arity * sizeof(ERL_NIF_TERM));
  195. return 1;
  196. }
  197. return 0;
  198. }
  199. static void
  200. termstack_destroy(TermStack *stack)
  201. {
  202. if(stack->elements != &stack->__default_elements[0]) {
  203. enif_free(stack->elements);
  204. }
  205. }
  206. static inline int
  207. enc_literal(Encoder* e, const char* literal, size_t len)
  208. {
  209. if(!enc_ensure(e, len)) {
  210. return 0;
  211. }
  212. memcpy(&(e->p[e->i]), literal, len);
  213. e->i += len;
  214. e->count++;
  215. return 1;
  216. }
  217. static inline int
  218. enc_special_character(Encoder* e, int val) {
  219. switch(val) {
  220. case '\"':
  221. case '\\':
  222. e->p[e->i++] = '\\';
  223. e->p[e->i++] = val;
  224. return 1;
  225. case '\b':
  226. e->p[e->i++] = '\\';
  227. e->p[e->i++] = 'b';
  228. return 1;
  229. case '\f':
  230. e->p[e->i++] = '\\';
  231. e->p[e->i++] = 'f';
  232. return 1;
  233. case '\n':
  234. e->p[e->i++] = '\\';
  235. e->p[e->i++] = 'n';
  236. return 1;
  237. case '\r':
  238. e->p[e->i++] = '\\';
  239. e->p[e->i++] = 'r';
  240. return 1;
  241. case '\t':
  242. e->p[e->i++] = '\\';
  243. e->p[e->i++] = 't';
  244. return 1;
  245. case '/':
  246. if(e->escape_forward_slashes) {
  247. e->p[e->i++] = '\\';
  248. }
  249. e->p[e->i++] = '/';
  250. return 1;
  251. default:
  252. if(val < 0x20) {
  253. e->i += unicode_uescape(val, &(e->p[e->i]));
  254. return 1;
  255. }
  256. return 0;
  257. }
  258. }
  259. static int
  260. enc_atom(Encoder* e, ERL_NIF_TERM val)
  261. {
  262. static const int MAX_ESCAPE_LEN = 12;
  263. unsigned char data[512];
  264. size_t size;
  265. int i;
  266. if(!enif_get_atom(e->env, val, (char*)data, 512, ERL_NIF_LATIN1)) {
  267. return 0;
  268. }
  269. size = strlen((const char*)data);
  270. /* Reserve space for the first quotation mark and most of the output. */
  271. if(!enc_ensure(e, size + MAX_ESCAPE_LEN + 1)) {
  272. return 0;
  273. }
  274. e->p[e->i++] = '\"';
  275. i = 0;
  276. while(i < size) {
  277. int val = data[i];
  278. if(!enc_ensure(e, MAX_ESCAPE_LEN)) {
  279. return 0;
  280. }
  281. if(enc_special_character(e, val)) {
  282. i++;
  283. } else if(val < 0x80) {
  284. e->p[e->i++] = val;
  285. i++;
  286. } else if(val >= 0x80) {
  287. /* The atom encoding is latin1, so we don't need validation
  288. * as all latin1 characters are valid UTF-8 characters. */
  289. if (!e->uescape) {
  290. e->i += unicode_to_utf8(val, &e->p[e->i]);
  291. } else {
  292. e->i += unicode_uescape(val, &e->p[e->i]);
  293. }
  294. i++;
  295. }
  296. }
  297. if(!enc_ensure(e, 1)) {
  298. return 0;
  299. }
  300. e->p[e->i++] = '\"';
  301. e->count++;
  302. return 1;
  303. }
  304. static int
  305. enc_string(Encoder* e, ERL_NIF_TERM val)
  306. {
  307. static const int MAX_ESCAPE_LEN = 12;
  308. ErlNifBinary bin;
  309. unsigned char* data;
  310. size_t size;
  311. int ulen;
  312. int uval;
  313. int i;
  314. if(!enif_inspect_binary(e->env, val, &bin)) {
  315. return 0;
  316. }
  317. data = bin.data;
  318. size = bin.size;
  319. /* Reserve space for the first quotation mark and most of the output. */
  320. if(!enc_ensure(e, size + MAX_ESCAPE_LEN + 1)) {
  321. return 0;
  322. }
  323. e->p[e->i++] = '\"';
  324. i = 0;
  325. while(i < size) {
  326. if(!enc_ensure(e, MAX_ESCAPE_LEN)) {
  327. return 0;
  328. }
  329. if(enc_special_character(e, data[i])) {
  330. i++;
  331. } else if(data[i] < 0x80) {
  332. e->p[e->i++] = data[i++];
  333. } else if(data[i] >= 0x80) {
  334. ulen = utf8_validate(&(data[i]), size - i);
  335. if (ulen < 0) {
  336. return 0;
  337. } else if (e->uescape) {
  338. int esc_len;
  339. uval = utf8_to_unicode(&(data[i]), size-i);
  340. if(uval < 0) {
  341. return 0;
  342. }
  343. esc_len = unicode_uescape(uval, &(e->p[e->i]));
  344. if(esc_len < 0) {
  345. return 0;
  346. }
  347. e->i += esc_len;
  348. } else {
  349. memcpy(&e->p[e->i], &data[i], ulen);
  350. e->i += ulen;
  351. }
  352. i += ulen;
  353. }
  354. }
  355. if(!enc_ensure(e, 1)) {
  356. return 0;
  357. }
  358. e->p[e->i++] = '\"';
  359. e->count++;
  360. return 1;
  361. }
  362. static inline int
  363. enc_object_key(ErlNifEnv *env, Encoder* e, ERL_NIF_TERM val)
  364. {
  365. if(enif_is_atom(env, val)) {
  366. return enc_atom(e, val);
  367. }
  368. return enc_string(e, val);
  369. }
  370. // From https://www.slideshare.net/andreialexandrescu1/three-optimization-tips-for-c-15708507
  371. #define P01 10
  372. #define P02 100
  373. #define P03 1000
  374. #define P04 10000
  375. #define P05 100000
  376. #define P06 1000000
  377. #define P07 10000000
  378. #define P08 100000000
  379. #define P09 1000000000
  380. #define P10 10000000000
  381. #define P11 100000000000L
  382. #define P12 1000000000000L
  383. int
  384. digits10(ErlNifUInt64 v)
  385. {
  386. if (v < P01) return 1;
  387. if (v < P02) return 2;
  388. if (v < P03) return 3;
  389. if (v < P12) {
  390. if (v < P08) {
  391. if (v < P06) {
  392. if (v < P04) return 4;
  393. return 5 + (v >= P05);
  394. }
  395. return 7 + (v >= P07);
  396. }
  397. if (v < P10) {
  398. return 9 + (v >= P09);
  399. }
  400. return 11 + (v >= P11);
  401. }
  402. return 12 + digits10(v / P12);
  403. }
  404. unsigned int
  405. u64ToAsciiTable(unsigned char *dst, ErlNifUInt64 value)
  406. {
  407. static const char digits[201] =
  408. "0001020304050607080910111213141516171819"
  409. "2021222324252627282930313233343536373839"
  410. "4041424344454647484950515253545556575859"
  411. "6061626364656667686970717273747576777879"
  412. "8081828384858687888990919293949596979899";
  413. const int length = digits10(value);
  414. int next = length - 1;
  415. while (value >= 100) {
  416. const int i = (value % 100) * 2;
  417. value /= 100;
  418. dst[next] = digits[i + 1];
  419. dst[next - 1] = digits[i];
  420. next -= 2;
  421. }
  422. // Handle last 1-2 digits.
  423. if (value < 10) {
  424. dst[next] = '0' + (unsigned int) value;
  425. } else {
  426. const int i = (unsigned int) value * 2;
  427. dst[next] = digits[i + 1];
  428. dst[next - 1] = digits[i];
  429. }
  430. return length;
  431. }
  432. unsigned
  433. i64ToAsciiTable(unsigned char *dst, ErlNifSInt64 value)
  434. {
  435. if (value < 0) {
  436. *dst++ = '-';
  437. return 1 + u64ToAsciiTable(dst, -value);
  438. } else {
  439. return u64ToAsciiTable(dst, value);
  440. }
  441. }
  442. static inline int
  443. enc_long(Encoder* e, ErlNifSInt64 val)
  444. {
  445. if(!enc_ensure(e, 32)) {
  446. return 0;
  447. }
  448. e->i += i64ToAsciiTable(&(e->p[e->i]), val);
  449. e->count++;
  450. return 1;
  451. }
  452. static inline int
  453. enc_double(Encoder* e, double val)
  454. {
  455. unsigned char* start;
  456. size_t len;
  457. if(!enc_ensure(e, 32)) {
  458. return 0;
  459. }
  460. start = &(e->p[e->i]);
  461. if(!double_to_shortest(start, e->buffer.size, &len, val)) {
  462. return 0;
  463. }
  464. e->i += len;
  465. e->count++;
  466. return 1;
  467. }
  468. static inline int
  469. enc_char(Encoder* e, char c)
  470. {
  471. if(!enc_ensure(e, 1)) {
  472. return 0;
  473. }
  474. e->p[e->i++] = c;
  475. return 1;
  476. }
  477. static int
  478. enc_shift(Encoder* e) {
  479. int i;
  480. char* shift;
  481. assert(e->shiftcnt >= 0 && "Invalid shift count.");
  482. shift = shifts[MIN(e->shiftcnt, NUM_SHIFTS-1)];
  483. if(!enc_literal(e, shift + 1, *shift))
  484. return 0;
  485. // Finish the rest of this shift it's it bigger than
  486. // our largest predefined constant.
  487. for(i = NUM_SHIFTS - 1; i < e->shiftcnt; i++) {
  488. if(!enc_literal(e, " ", 2))
  489. return 0;
  490. }
  491. return 1;
  492. }
  493. static inline int
  494. enc_start_object(Encoder* e)
  495. {
  496. e->count++;
  497. e->shiftcnt++;
  498. if(!enc_char(e, '{'))
  499. return 0;
  500. MAYBE_PRETTY(e);
  501. return 1;
  502. }
  503. static inline int
  504. enc_end_object(Encoder* e)
  505. {
  506. e->shiftcnt--;
  507. MAYBE_PRETTY(e);
  508. return enc_char(e, '}');
  509. }
  510. static inline int
  511. enc_start_array(Encoder* e)
  512. {
  513. e->count++;
  514. e->shiftcnt++;
  515. if(!enc_char(e, '['))
  516. return 0;
  517. MAYBE_PRETTY(e);
  518. return 1;
  519. }
  520. static inline int
  521. enc_end_array(Encoder* e)
  522. {
  523. e->shiftcnt--;
  524. MAYBE_PRETTY(e);
  525. return enc_char(e, ']');
  526. }
  527. static inline int
  528. enc_colon(Encoder* e)
  529. {
  530. if(e->pretty)
  531. return enc_literal(e, " : ", 3);
  532. return enc_char(e, ':');
  533. }
  534. static inline int
  535. enc_comma(Encoder* e)
  536. {
  537. if(!enc_char(e, ','))
  538. return 0;
  539. MAYBE_PRETTY(e);
  540. return 1;
  541. }
  542. #if MAP_TYPE_PRESENT
  543. int
  544. enc_map_to_ejson(ErlNifEnv* env, ERL_NIF_TERM map, ERL_NIF_TERM* out)
  545. {
  546. ErlNifMapIterator iter;
  547. size_t size;
  548. ERL_NIF_TERM list;
  549. ERL_NIF_TERM tuple;
  550. ERL_NIF_TERM key;
  551. ERL_NIF_TERM val;
  552. if(!enif_get_map_size(env, map, &size)) {
  553. return 0;
  554. }
  555. list = enif_make_list(env, 0);
  556. if(size == 0) {
  557. *out = enif_make_tuple1(env, list);
  558. return 1;
  559. }
  560. if(!enif_map_iterator_create(env, map, &iter, ERL_NIF_MAP_ITERATOR_HEAD)) {
  561. return 0;
  562. }
  563. do {
  564. if(!enif_map_iterator_get_pair(env, &iter, &key, &val)) {
  565. enif_map_iterator_destroy(env, &iter);
  566. return 0;
  567. }
  568. tuple = enif_make_tuple2(env, key, val);
  569. list = enif_make_list_cell(env, tuple, list);
  570. } while(enif_map_iterator_next(env, &iter));
  571. enif_map_iterator_destroy(env, &iter);
  572. *out = enif_make_tuple1(env, list);
  573. return 1;
  574. }
  575. #endif
  576. ERL_NIF_TERM
  577. encode_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
  578. {
  579. jiffy_st* st = (jiffy_st*) enif_priv_data(env);
  580. Encoder* e;
  581. ERL_NIF_TERM opts;
  582. ERL_NIF_TERM val;
  583. ERL_NIF_TERM tmp_argv[3];
  584. if(argc != 2) {
  585. return enif_make_badarg(env);
  586. }
  587. e = enc_new(env);
  588. if(e == NULL) {
  589. return make_error(st, env, "internal_error");
  590. }
  591. tmp_argv[0] = enif_make_resource(env, e);
  592. tmp_argv[1] = enif_make_tuple1(env, argv[0]);
  593. tmp_argv[2] = enif_make_list(env, 0);
  594. enif_release_resource(e);
  595. opts = argv[1];
  596. if(!enif_is_list(env, opts)) {
  597. return enif_make_badarg(env);
  598. }
  599. while(enif_get_list_cell(env, opts, &val, &opts)) {
  600. if(enif_is_identical(val, e->atoms->atom_uescape)) {
  601. e->uescape = 1;
  602. } else if(enif_is_identical(val, e->atoms->atom_pretty)) {
  603. e->pretty = 1;
  604. } else if(enif_is_identical(val, e->atoms->atom_escape_forward_slashes)) {
  605. e->escape_forward_slashes = 1;
  606. } else if(enif_is_identical(val, e->atoms->atom_use_nil)) {
  607. e->use_nil = 1;
  608. } else if(enif_is_identical(val, e->atoms->atom_force_utf8)) {
  609. // Ignore, handled in Erlang
  610. } else if(get_bytes_per_iter(env, val, &(e->bytes_per_red))) {
  611. continue;
  612. } else if(get_bytes_per_red(env, val, &(e->bytes_per_red))) {
  613. continue;
  614. } else {
  615. return enif_make_badarg(env);
  616. }
  617. }
  618. return encode_iter(env, 3, tmp_argv);
  619. }
  620. ERL_NIF_TERM
  621. encode_iter(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
  622. {
  623. TermStack stack;
  624. Encoder* e;
  625. jiffy_st* st = (jiffy_st*) enif_priv_data(env);
  626. ERL_NIF_TERM ret = 0;
  627. ERL_NIF_TERM curr;
  628. ERL_NIF_TERM item;
  629. const ERL_NIF_TERM* tuple;
  630. int arity;
  631. ErlNifSInt64 lval;
  632. double dval;
  633. size_t start;
  634. size_t bytes_processed = 0;
  635. if(!enif_get_resource(env, argv[0], st->res_enc, (void**) &e)) {
  636. return enif_make_badarg(env);
  637. }
  638. if(!enc_init(e, env)) {
  639. return enif_make_badarg(env);
  640. }
  641. if(!termstack_restore(env, argv[1], &stack)) {
  642. return enif_make_badarg(env);
  643. }
  644. e->iolist = argv[2];
  645. start = e->iosize + e->i;
  646. while(!termstack_is_empty(&stack)) {
  647. size_t bytes_processed = (e->iosize + e->i) - start;
  648. if(should_yield(env, bytes_processed, e->bytes_per_red)) {
  649. ERL_NIF_TERM tmp_argv[3];
  650. assert(enif_is_list(env, e->iolist));
  651. tmp_argv[0] = argv[0];
  652. tmp_argv[1] = termstack_save(env, &stack);
  653. tmp_argv[2] = e->iolist;
  654. termstack_destroy(&stack);
  655. bump_used_reds(env, bytes_processed, e->bytes_per_red);
  656. return enif_schedule_nif(env,
  657. "nif_encode_iter",
  658. 0,
  659. encode_iter,
  660. 3,
  661. tmp_argv);
  662. }
  663. curr = termstack_pop(&stack);
  664. if(enif_is_atom(env, curr)) {
  665. if(enif_is_identical(curr, e->atoms->ref_object)) {
  666. curr = termstack_pop(&stack);
  667. if(!enif_get_list_cell(env, curr, &item, &curr)) {
  668. if(!enc_end_object(e)) {
  669. ret = enc_error(e, "internal_error");
  670. goto done;
  671. }
  672. continue;
  673. }
  674. if(!enif_get_tuple(env, item, &arity, &tuple)) {
  675. ret = enc_obj_error(e, "invalid_object_member", item);
  676. goto done;
  677. }
  678. if(arity != 2) {
  679. ret = enc_obj_error(e, "invalid_object_member_arity", item);
  680. goto done;
  681. }
  682. if(!enc_comma(e)) {
  683. ret = enc_error(e, "internal_error");
  684. goto done;
  685. }
  686. if(!enc_object_key(env, e, tuple[0])) {
  687. ret = enc_obj_error(e, "invalid_object_member_key", tuple[0]);
  688. goto done;
  689. }
  690. if(!enc_colon(e)) {
  691. ret = enc_error(e, "internal_error");
  692. goto done;
  693. }
  694. termstack_push(&stack, curr);
  695. termstack_push(&stack, e->atoms->ref_object);
  696. termstack_push(&stack, tuple[1]);
  697. } else if(enif_is_identical(curr, e->atoms->ref_array)) {
  698. curr = termstack_pop(&stack);
  699. if(!enif_get_list_cell(env, curr, &item, &curr)) {
  700. if(!enc_end_array(e)) {
  701. ret = enc_error(e, "internal_error");
  702. goto done;
  703. }
  704. continue;
  705. }
  706. if(!enc_comma(e)) {
  707. ret = enc_error(e, "internal_error");
  708. goto done;
  709. }
  710. termstack_push(&stack, curr);
  711. termstack_push(&stack, e->atoms->ref_array);
  712. termstack_push(&stack, item);
  713. } else if(enif_is_identical(curr, e->atoms->atom_null)) {
  714. if(!enc_literal(e, "null", 4)) {
  715. ret = enc_error(e, "null");
  716. goto done;
  717. }
  718. } else if(e->use_nil && enif_is_identical(curr, e->atoms->atom_nil)) {
  719. if(!enc_literal(e, "null", 4)) {
  720. ret = enc_error(e, "null");
  721. goto done;
  722. }
  723. } else if(enif_is_identical(curr, e->atoms->atom_true)) {
  724. if(!enc_literal(e, "true", 4)) {
  725. ret = enc_error(e, "true");
  726. goto done;
  727. }
  728. } else if(enif_is_identical(curr, e->atoms->atom_false)) {
  729. if(!enc_literal(e, "false", 5)) {
  730. ret = enc_error(e, "false");
  731. goto done;
  732. }
  733. } else if(!enc_atom(e, curr)) {
  734. ret = enc_obj_error(e, "invalid_string", curr);
  735. goto done;
  736. }
  737. } else if(enif_is_binary(env, curr)) {
  738. if(!enc_string(e, curr)) {
  739. ret = enc_obj_error(e, "invalid_string", curr);
  740. goto done;
  741. }
  742. } else if(enif_get_int64(env, curr, &lval)) {
  743. if(!enc_long(e, lval)) {
  744. ret = enc_error(e, "internal_error");
  745. goto done;
  746. }
  747. } else if(enif_get_double(env, curr, &dval)) {
  748. if(!enc_double(e, dval)) {
  749. ret = enc_error(e, "internal_error");
  750. goto done;
  751. }
  752. } else if(enif_get_tuple(env, curr, &arity, &tuple)) {
  753. if(arity != 1) {
  754. ret = enc_obj_error(e, "invalid_ejson", curr);
  755. goto done;
  756. }
  757. if(!enif_is_list(env, tuple[0])) {
  758. ret = enc_obj_error(e, "invalid_object", curr);
  759. goto done;
  760. }
  761. if(!enc_start_object(e)) {
  762. ret = enc_error(e, "internal_error");
  763. goto done;
  764. }
  765. if(!enif_get_list_cell(env, tuple[0], &item, &curr)) {
  766. if(!enc_end_object(e)) {
  767. ret = enc_error(e, "internal_error");
  768. goto done;
  769. }
  770. continue;
  771. }
  772. if(!enif_get_tuple(env, item, &arity, &tuple)) {
  773. ret = enc_obj_error(e, "invalid_object_member", item);
  774. goto done;
  775. }
  776. if(arity != 2) {
  777. ret = enc_obj_error(e, "invalid_object_member_arity", item);
  778. goto done;
  779. }
  780. if(!enc_object_key(env, e, tuple[0])) {
  781. ret = enc_obj_error(e, "invalid_object_member_key", tuple[0]);
  782. goto done;
  783. }
  784. if(!enc_colon(e)) {
  785. ret = enc_error(e, "internal_error");
  786. goto done;
  787. }
  788. termstack_push(&stack, curr);
  789. termstack_push(&stack, e->atoms->ref_object);
  790. termstack_push(&stack, tuple[1]);
  791. #if MAP_TYPE_PRESENT
  792. } else if(enif_is_map(env, curr)) {
  793. if(!enc_map_to_ejson(env, curr, &curr)) {
  794. ret = enc_error(e, "internal_error");
  795. goto done;
  796. }
  797. termstack_push(&stack, curr);
  798. #endif
  799. } else if(enif_is_list(env, curr)) {
  800. if(!enc_start_array(e)) {
  801. ret = enc_error(e, "internal_error");
  802. goto done;
  803. }
  804. if(!enif_get_list_cell(env, curr, &item, &curr)) {
  805. if(!enc_end_array(e)) {
  806. ret = enc_error(e, "internal_error");
  807. goto done;
  808. }
  809. continue;
  810. }
  811. termstack_push(&stack, curr);
  812. termstack_push(&stack, e->atoms->ref_array);
  813. termstack_push(&stack, item);
  814. } else if(enif_is_number(env, curr)) {
  815. /* This is a bignum and we need to handle it up in Erlang code as
  816. * the NIF API doesn't support them yet.
  817. *
  818. * Flush our current output and mark ourselves as needing a fixup
  819. * after we return. */
  820. if(!enc_flush(e)) {
  821. ret = enc_error(e, "internal_error");
  822. goto done;
  823. }
  824. e->iolist = enif_make_list_cell(e->env, curr, e->iolist);
  825. e->partial_output = 1;
  826. } else {
  827. ret = enc_obj_error(e, "invalid_ejson", curr);
  828. goto done;
  829. }
  830. }
  831. if(!enc_flush(e)) {
  832. ret = enc_error(e, "internal_error");
  833. goto done;
  834. }
  835. assert(enif_is_list(env, e->iolist));
  836. if(e->partial_output) {
  837. ret = enif_make_tuple2(env, e->atoms->atom_partial, e->iolist);
  838. } else {
  839. ret = e->iolist;
  840. }
  841. done:
  842. bump_used_reds(env, bytes_processed, e->bytes_per_red);
  843. termstack_destroy(&stack);
  844. return ret;
  845. }