Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

367 rader
12 KiB

  1. // Copyright 2010 the V8 project authors. All rights reserved.
  2. // Redistribution and use in source and binary forms, with or without
  3. // modification, are permitted provided that the following conditions are
  4. // met:
  5. //
  6. // * Redistributions of source code must retain the above copyright
  7. // notice, this list of conditions and the following disclaimer.
  8. // * Redistributions in binary form must reproduce the above
  9. // copyright notice, this list of conditions and the following
  10. // disclaimer in the documentation and/or other materials provided
  11. // with the distribution.
  12. // * Neither the name of Google Inc. nor the names of its
  13. // contributors may be used to endorse or promote products derived
  14. // from this software without specific prior written permission.
  15. //
  16. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  17. // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  18. // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  19. // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  20. // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  21. // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  22. // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23. // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24. // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  26. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27. #ifndef DOUBLE_CONVERSION_UTILS_H_
  28. #define DOUBLE_CONVERSION_UTILS_H_
  29. #include <cstdlib>
  30. #include <cstring>
  31. #include <cassert>
  32. #ifndef ASSERT
  33. #define ASSERT(condition) \
  34. assert(condition);
  35. #endif
  36. #ifndef UNIMPLEMENTED
  37. #define UNIMPLEMENTED() (abort())
  38. #endif
  39. #ifndef DOUBLE_CONVERSION_NO_RETURN
  40. #ifdef _MSC_VER
  41. #define DOUBLE_CONVERSION_NO_RETURN __declspec(noreturn)
  42. #else
  43. #define DOUBLE_CONVERSION_NO_RETURN __attribute__((noreturn))
  44. #endif
  45. #endif
  46. #ifndef UNREACHABLE
  47. #ifdef _MSC_VER
  48. void DOUBLE_CONVERSION_NO_RETURN abort_noreturn();
  49. inline void abort_noreturn() { abort(); }
  50. #define UNREACHABLE() (abort_noreturn())
  51. #else
  52. #define UNREACHABLE() (abort())
  53. #endif
  54. #endif
  55. #ifndef DOUBLE_CONVERSION_UNUSED
  56. #ifdef __GNUC__
  57. #define DOUBLE_CONVERSION_UNUSED __attribute__((unused))
  58. #else
  59. #define DOUBLE_CONVERSION_UNUSED
  60. #endif
  61. #endif
  62. // Double operations detection based on target architecture.
  63. // Linux uses a 80bit wide floating point stack on x86. This induces double
  64. // rounding, which in turn leads to wrong results.
  65. // An easy way to test if the floating-point operations are correct is to
  66. // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then
  67. // the result is equal to 89255e-22.
  68. // The best way to test this, is to create a division-function and to compare
  69. // the output of the division with the expected result. (Inlining must be
  70. // disabled.)
  71. // On Linux,x86 89255e-22 != Div_double(89255.0/1e22)
  72. //
  73. // For example:
  74. /*
  75. // -- in div.c
  76. double Div_double(double x, double y) { return x / y; }
  77. // -- in main.c
  78. double Div_double(double x, double y); // Forward declaration.
  79. int main(int argc, char** argv) {
  80. return Div_double(89255.0, 1e22) == 89255e-22;
  81. }
  82. */
  83. // Run as follows ./main || echo "correct"
  84. //
  85. // If it prints "correct" then the architecture should be here, in the "correct" section.
  86. #if defined(_M_X64) || defined(__x86_64__) || \
  87. defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \
  88. defined(__hppa__) || defined(__ia64__) || \
  89. defined(__mips__) || \
  90. defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \
  91. defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \
  92. defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
  93. defined(__SH4__) || defined(__alpha__) || \
  94. defined(_MIPS_ARCH_MIPS32R2) || defined(__ARMEB__) ||\
  95. defined(__AARCH64EL__) || defined(__aarch64__) || defined(__AARCH64EB__) || \
  96. defined(__riscv) || \
  97. defined(__or1k__) || defined(__arc__) || \
  98. defined(__EMSCRIPTEN__)
  99. #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
  100. #elif defined(__mc68000__) || \
  101. defined(__pnacl__) || defined(__native_client__)
  102. #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
  103. #elif defined(_M_IX86) || defined(__i386__) || defined(__i386)
  104. #if defined(_WIN32)
  105. // Windows uses a 64bit wide floating point stack.
  106. #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
  107. #else
  108. #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
  109. #endif // _WIN32
  110. #else
  111. #error Target architecture was not detected as supported by Double-Conversion.
  112. #endif
  113. #if defined(_WIN32) && !defined(__MINGW32__)
  114. typedef signed char int8_t;
  115. typedef unsigned char uint8_t;
  116. typedef short int16_t; // NOLINT
  117. typedef unsigned short uint16_t; // NOLINT
  118. typedef int int32_t;
  119. typedef unsigned int uint32_t;
  120. typedef __int64 int64_t;
  121. typedef unsigned __int64 uint64_t;
  122. // intptr_t and friends are defined in crtdefs.h through stdio.h.
  123. #else
  124. #include <stdint.h>
  125. #endif
  126. typedef uint16_t uc16;
  127. // The following macro works on both 32 and 64-bit platforms.
  128. // Usage: instead of writing 0x1234567890123456
  129. // write UINT64_2PART_C(0x12345678,90123456);
  130. #define UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
  131. // The expression ARRAY_SIZE(a) is a compile-time constant of type
  132. // size_t which represents the number of elements of the given
  133. // array. You should only use ARRAY_SIZE on statically allocated
  134. // arrays.
  135. #ifndef ARRAY_SIZE
  136. #define ARRAY_SIZE(a) \
  137. ((sizeof(a) / sizeof(*(a))) / \
  138. static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
  139. #endif
  140. // A macro to disallow the evil copy constructor and operator= functions
  141. // This should be used in the private: declarations for a class
  142. #ifndef DC_DISALLOW_COPY_AND_ASSIGN
  143. #define DC_DISALLOW_COPY_AND_ASSIGN(TypeName) \
  144. TypeName(const TypeName&); \
  145. void operator=(const TypeName&)
  146. #endif
  147. // A macro to disallow all the implicit constructors, namely the
  148. // default constructor, copy constructor and operator= functions.
  149. //
  150. // This should be used in the private: declarations for a class
  151. // that wants to prevent anyone from instantiating it. This is
  152. // especially useful for classes containing only static methods.
  153. #ifndef DC_DISALLOW_IMPLICIT_CONSTRUCTORS
  154. #define DC_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
  155. TypeName(); \
  156. DC_DISALLOW_COPY_AND_ASSIGN(TypeName)
  157. #endif
  158. namespace double_conversion {
  159. static const int kCharSize = sizeof(char);
  160. // Returns the maximum of the two parameters.
  161. template <typename T>
  162. static T Max(T a, T b) {
  163. return a < b ? b : a;
  164. }
  165. // Returns the minimum of the two parameters.
  166. template <typename T>
  167. static T Min(T a, T b) {
  168. return a < b ? a : b;
  169. }
  170. inline int StrLength(const char* string) {
  171. size_t length = strlen(string);
  172. ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
  173. return static_cast<int>(length);
  174. }
  175. // This is a simplified version of V8's Vector class.
  176. template <typename T>
  177. class Vector {
  178. public:
  179. Vector() : start_(NULL), length_(0) {}
  180. Vector(T* data, int len) : start_(data), length_(len) {
  181. ASSERT(len == 0 || (len > 0 && data != NULL));
  182. }
  183. // Returns a vector using the same backing storage as this one,
  184. // spanning from and including 'from', to but not including 'to'.
  185. Vector<T> SubVector(int from, int to) {
  186. ASSERT(to <= length_);
  187. ASSERT(from < to);
  188. ASSERT(0 <= from);
  189. return Vector<T>(start() + from, to - from);
  190. }
  191. // Returns the length of the vector.
  192. int length() const { return length_; }
  193. // Returns whether or not the vector is empty.
  194. bool is_empty() const { return length_ == 0; }
  195. // Returns the pointer to the start of the data in the vector.
  196. T* start() const { return start_; }
  197. // Access individual vector elements - checks bounds in debug mode.
  198. T& operator[](int index) const {
  199. ASSERT(0 <= index && index < length_);
  200. return start_[index];
  201. }
  202. T& first() { return start_[0]; }
  203. T& last() { return start_[length_ - 1]; }
  204. private:
  205. T* start_;
  206. int length_;
  207. };
  208. // Helper class for building result strings in a character buffer. The
  209. // purpose of the class is to use safe operations that checks the
  210. // buffer bounds on all operations in debug mode.
  211. class StringBuilder {
  212. public:
  213. StringBuilder(char* buffer, int buffer_size)
  214. : buffer_(buffer, buffer_size), position_(0) { }
  215. ~StringBuilder() { if (!is_finalized()) Finalize(); }
  216. int size() const { return buffer_.length(); }
  217. // Get the current position in the builder.
  218. int position() const {
  219. ASSERT(!is_finalized());
  220. return position_;
  221. }
  222. // Reset the position.
  223. void Reset() { position_ = 0; }
  224. // Add a single character to the builder. It is not allowed to add
  225. // 0-characters; use the Finalize() method to terminate the string
  226. // instead.
  227. void AddCharacter(char c) {
  228. ASSERT(c != '\0');
  229. ASSERT(!is_finalized() && position_ < buffer_.length());
  230. buffer_[position_++] = c;
  231. }
  232. // Add an entire string to the builder. Uses strlen() internally to
  233. // compute the length of the input string.
  234. void AddString(const char* s) {
  235. AddSubstring(s, StrLength(s));
  236. }
  237. // Add the first 'n' characters of the given string 's' to the
  238. // builder. The input string must have enough characters.
  239. void AddSubstring(const char* s, int n) {
  240. ASSERT(!is_finalized() && position_ + n < buffer_.length());
  241. ASSERT(static_cast<size_t>(n) <= strlen(s));
  242. memmove(&buffer_[position_], s, n * kCharSize);
  243. position_ += n;
  244. }
  245. // Add character padding to the builder. If count is non-positive,
  246. // nothing is added to the builder.
  247. void AddPadding(char c, int count) {
  248. for (int i = 0; i < count; i++) {
  249. AddCharacter(c);
  250. }
  251. }
  252. // Finalize the string by 0-terminating it and returning the buffer.
  253. char* Finalize() {
  254. ASSERT(!is_finalized() && position_ < buffer_.length());
  255. buffer_[position_] = '\0';
  256. // Make sure nobody managed to add a 0-character to the
  257. // buffer while building the string.
  258. ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_));
  259. position_ = -1;
  260. ASSERT(is_finalized());
  261. return buffer_.start();
  262. }
  263. private:
  264. Vector<char> buffer_;
  265. int position_;
  266. bool is_finalized() const { return position_ < 0; }
  267. DC_DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
  268. };
  269. // The type-based aliasing rule allows the compiler to assume that pointers of
  270. // different types (for some definition of different) never alias each other.
  271. // Thus the following code does not work:
  272. //
  273. // float f = foo();
  274. // int fbits = *(int*)(&f);
  275. //
  276. // The compiler 'knows' that the int pointer can't refer to f since the types
  277. // don't match, so the compiler may cache f in a register, leaving random data
  278. // in fbits. Using C++ style casts makes no difference, however a pointer to
  279. // char data is assumed to alias any other pointer. This is the 'memcpy
  280. // exception'.
  281. //
  282. // Bit_cast uses the memcpy exception to move the bits from a variable of one
  283. // type of a variable of another type. Of course the end result is likely to
  284. // be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005)
  285. // will completely optimize BitCast away.
  286. //
  287. // There is an additional use for BitCast.
  288. // Recent gccs will warn when they see casts that may result in breakage due to
  289. // the type-based aliasing rule. If you have checked that there is no breakage
  290. // you can use BitCast to cast one pointer type to another. This confuses gcc
  291. // enough that it can no longer see that you have cast one pointer type to
  292. // another thus avoiding the warning.
  293. template <class Dest, class Source>
  294. inline Dest BitCast(const Source& source) {
  295. // Compile time assertion: sizeof(Dest) == sizeof(Source)
  296. // A compile error here means your Dest and Source have different sizes.
  297. #if __cplusplus >= 201103L
  298. static_assert(sizeof(Dest) == sizeof(Source),
  299. "source and destination size mismatch");
  300. #else
  301. DOUBLE_CONVERSION_UNUSED
  302. typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
  303. #endif
  304. Dest dest;
  305. memmove(&dest, &source, sizeof(dest));
  306. return dest;
  307. }
  308. template <class Dest, class Source>
  309. inline Dest BitCast(Source* source) {
  310. return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
  311. }
  312. } // namespace double_conversion
  313. #endif // DOUBLE_CONVERSION_UTILS_H_