While using rebar's dependency management was surprisingly easy it broke apps that tried to build Jiffy as a dependency due to relative path #includes. This also fixes a few other issues. Most notably it removes the use of the ECMAScript compatible encoding due to JSON's lack of support for +/- Inf and NaN.pull/44/head
@ -1,31 +0,0 @@ | |||
#include <string.h> | |||
#include "double-conversion.h" | |||
using namespace double_conversion; | |||
#ifdef __cplusplus | |||
extern "C" { | |||
#endif | |||
// Returns the length of the string | |||
int | |||
double_to_shortest(char *buf, size_t size, double val) | |||
{ | |||
int len = -1; | |||
StringBuilder builder(buf, size); | |||
const DoubleToStringConverter& dc = | |||
DoubleToStringConverter::EcmaScriptConverter(); | |||
dc.ToShortest(val, &builder); | |||
len = builder.position(); | |||
buf = builder.Finalize(); | |||
return len; | |||
} | |||
#ifdef __cplusplus | |||
} | |||
#endif |
@ -0,0 +1,12 @@ | |||
# Below is a list of people and organizations that have contributed | |||
# to the double-conversion project. Names should be added to the | |||
# list like so: | |||
# | |||
# Name/Organization <email address> | |||
Google Inc. | |||
Mozilla Foundation | |||
Jeff Muizelaar <jmuizelaar@mozilla.com> | |||
Mike Hommey <mhommey@mozilla.com> | |||
Martin Olsson <mnemo@minimum.se> |
@ -0,0 +1,26 @@ | |||
Copyright 2006-2011, the V8 project authors. All rights reserved. | |||
Redistribution and use in source and binary forms, with or without | |||
modification, are permitted provided that the following conditions are | |||
met: | |||
* Redistributions of source code must retain the above copyright | |||
notice, this list of conditions and the following disclaimer. | |||
* Redistributions in binary form must reproduce the above | |||
copyright notice, this list of conditions and the following | |||
disclaimer in the documentation and/or other materials provided | |||
with the distribution. | |||
* Neither the name of Google Inc. nor the names of its | |||
contributors may be used to endorse or promote products derived | |||
from this software without specific prior written permission. | |||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
@ -0,0 +1,3 @@ | |||
Downloaded: 2013-02-24 | |||
https://double-conversion.googlecode.com/files/double-conversion-1.1.1.tar.gz |
@ -0,0 +1,26 @@ | |||
Copyright 2006-2011, the V8 project authors. All rights reserved. | |||
Redistribution and use in source and binary forms, with or without | |||
modification, are permitted provided that the following conditions are | |||
met: | |||
* Redistributions of source code must retain the above copyright | |||
notice, this list of conditions and the following disclaimer. | |||
* Redistributions in binary form must reproduce the above | |||
copyright notice, this list of conditions and the following | |||
disclaimer in the documentation and/or other materials provided | |||
with the distribution. | |||
* Neither the name of Google Inc. nor the names of its | |||
contributors may be used to endorse or promote products derived | |||
from this software without specific prior written permission. | |||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
@ -0,0 +1,11 @@ | |||
http://code.google.com/p/double-conversion | |||
This project (double-conversion) provides binary-decimal and decimal-binary | |||
routines for IEEE doubles. | |||
The library consists of efficient conversion routines that have been extracted | |||
from the V8 JavaScript engine. The code has been refactored and improved so that | |||
it can be used more easily in other projects. | |||
There is extensive documentation in src/double-conversion.h. Other examples can | |||
be found in test/cctest/test-conversions.cc. |
@ -0,0 +1,640 @@ | |||
// Copyright 2010 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#include <math.h> | |||
#include "bignum-dtoa.h" | |||
#include "bignum.h" | |||
#include "ieee.h" | |||
namespace double_conversion { | |||
static int NormalizedExponent(uint64_t significand, int exponent) { | |||
ASSERT(significand != 0); | |||
while ((significand & Double::kHiddenBit) == 0) { | |||
significand = significand << 1; | |||
exponent = exponent - 1; | |||
} | |||
return exponent; | |||
} | |||
// Forward declarations: | |||
// Returns an estimation of k such that 10^(k-1) <= v < 10^k. | |||
static int EstimatePower(int exponent); | |||
// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator | |||
// and denominator. | |||
static void InitialScaledStartValues(uint64_t significand, | |||
int exponent, | |||
bool lower_boundary_is_closer, | |||
int estimated_power, | |||
bool need_boundary_deltas, | |||
Bignum* numerator, | |||
Bignum* denominator, | |||
Bignum* delta_minus, | |||
Bignum* delta_plus); | |||
// Multiplies numerator/denominator so that its values lies in the range 1-10. | |||
// Returns decimal_point s.t. | |||
// v = numerator'/denominator' * 10^(decimal_point-1) | |||
// where numerator' and denominator' are the values of numerator and | |||
// denominator after the call to this function. | |||
static void FixupMultiply10(int estimated_power, bool is_even, | |||
int* decimal_point, | |||
Bignum* numerator, Bignum* denominator, | |||
Bignum* delta_minus, Bignum* delta_plus); | |||
// Generates digits from the left to the right and stops when the generated | |||
// digits yield the shortest decimal representation of v. | |||
static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, | |||
Bignum* delta_minus, Bignum* delta_plus, | |||
bool is_even, | |||
Vector<char> buffer, int* length); | |||
// Generates 'requested_digits' after the decimal point. | |||
static void BignumToFixed(int requested_digits, int* decimal_point, | |||
Bignum* numerator, Bignum* denominator, | |||
Vector<char>(buffer), int* length); | |||
// Generates 'count' digits of numerator/denominator. | |||
// Once 'count' digits have been produced rounds the result depending on the | |||
// remainder (remainders of exactly .5 round upwards). Might update the | |||
// decimal_point when rounding up (for example for 0.9999). | |||
static void GenerateCountedDigits(int count, int* decimal_point, | |||
Bignum* numerator, Bignum* denominator, | |||
Vector<char>(buffer), int* length); | |||
void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, | |||
Vector<char> buffer, int* length, int* decimal_point) { | |||
ASSERT(v > 0); | |||
ASSERT(!Double(v).IsSpecial()); | |||
uint64_t significand; | |||
int exponent; | |||
bool lower_boundary_is_closer; | |||
if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) { | |||
float f = static_cast<float>(v); | |||
ASSERT(f == v); | |||
significand = Single(f).Significand(); | |||
exponent = Single(f).Exponent(); | |||
lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser(); | |||
} else { | |||
significand = Double(v).Significand(); | |||
exponent = Double(v).Exponent(); | |||
lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser(); | |||
} | |||
bool need_boundary_deltas = | |||
(mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE); | |||
bool is_even = (significand & 1) == 0; | |||
int normalized_exponent = NormalizedExponent(significand, exponent); | |||
// estimated_power might be too low by 1. | |||
int estimated_power = EstimatePower(normalized_exponent); | |||
// Shortcut for Fixed. | |||
// The requested digits correspond to the digits after the point. If the | |||
// number is much too small, then there is no need in trying to get any | |||
// digits. | |||
if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { | |||
buffer[0] = '\0'; | |||
*length = 0; | |||
// Set decimal-point to -requested_digits. This is what Gay does. | |||
// Note that it should not have any effect anyways since the string is | |||
// empty. | |||
*decimal_point = -requested_digits; | |||
return; | |||
} | |||
Bignum numerator; | |||
Bignum denominator; | |||
Bignum delta_minus; | |||
Bignum delta_plus; | |||
// Make sure the bignum can grow large enough. The smallest double equals | |||
// 4e-324. In this case the denominator needs fewer than 324*4 binary digits. | |||
// The maximum double is 1.7976931348623157e308 which needs fewer than | |||
// 308*4 binary digits. | |||
ASSERT(Bignum::kMaxSignificantBits >= 324*4); | |||
InitialScaledStartValues(significand, exponent, lower_boundary_is_closer, | |||
estimated_power, need_boundary_deltas, | |||
&numerator, &denominator, | |||
&delta_minus, &delta_plus); | |||
// We now have v = (numerator / denominator) * 10^estimated_power. | |||
FixupMultiply10(estimated_power, is_even, decimal_point, | |||
&numerator, &denominator, | |||
&delta_minus, &delta_plus); | |||
// We now have v = (numerator / denominator) * 10^(decimal_point-1), and | |||
// 1 <= (numerator + delta_plus) / denominator < 10 | |||
switch (mode) { | |||
case BIGNUM_DTOA_SHORTEST: | |||
case BIGNUM_DTOA_SHORTEST_SINGLE: | |||
GenerateShortestDigits(&numerator, &denominator, | |||
&delta_minus, &delta_plus, | |||
is_even, buffer, length); | |||
break; | |||
case BIGNUM_DTOA_FIXED: | |||
BignumToFixed(requested_digits, decimal_point, | |||
&numerator, &denominator, | |||
buffer, length); | |||
break; | |||
case BIGNUM_DTOA_PRECISION: | |||
GenerateCountedDigits(requested_digits, decimal_point, | |||
&numerator, &denominator, | |||
buffer, length); | |||
break; | |||
default: | |||
UNREACHABLE(); | |||
} | |||
buffer[*length] = '\0'; | |||
} | |||
// The procedure starts generating digits from the left to the right and stops | |||
// when the generated digits yield the shortest decimal representation of v. A | |||
// decimal representation of v is a number lying closer to v than to any other | |||
// double, so it converts to v when read. | |||
// | |||
// This is true if d, the decimal representation, is between m- and m+, the | |||
// upper and lower boundaries. d must be strictly between them if !is_even. | |||
// m- := (numerator - delta_minus) / denominator | |||
// m+ := (numerator + delta_plus) / denominator | |||
// | |||
// Precondition: 0 <= (numerator+delta_plus) / denominator < 10. | |||
// If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit | |||
// will be produced. This should be the standard precondition. | |||
static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, | |||
Bignum* delta_minus, Bignum* delta_plus, | |||
bool is_even, | |||
Vector<char> buffer, int* length) { | |||
// Small optimization: if delta_minus and delta_plus are the same just reuse | |||
// one of the two bignums. | |||
if (Bignum::Equal(*delta_minus, *delta_plus)) { | |||
delta_plus = delta_minus; | |||
} | |||
*length = 0; | |||
while (true) { | |||
uint16_t digit; | |||
digit = numerator->DivideModuloIntBignum(*denominator); | |||
ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. | |||
// digit = numerator / denominator (integer division). | |||
// numerator = numerator % denominator. | |||
buffer[(*length)++] = digit + '0'; | |||
// Can we stop already? | |||
// If the remainder of the division is less than the distance to the lower | |||
// boundary we can stop. In this case we simply round down (discarding the | |||
// remainder). | |||
// Similarly we test if we can round up (using the upper boundary). | |||
bool in_delta_room_minus; | |||
bool in_delta_room_plus; | |||
if (is_even) { | |||
in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); | |||
} else { | |||
in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); | |||
} | |||
if (is_even) { | |||
in_delta_room_plus = | |||
Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; | |||
} else { | |||
in_delta_room_plus = | |||
Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; | |||
} | |||
if (!in_delta_room_minus && !in_delta_room_plus) { | |||
// Prepare for next iteration. | |||
numerator->Times10(); | |||
delta_minus->Times10(); | |||
// We optimized delta_plus to be equal to delta_minus (if they share the | |||
// same value). So don't multiply delta_plus if they point to the same | |||
// object. | |||
if (delta_minus != delta_plus) { | |||
delta_plus->Times10(); | |||
} | |||
} else if (in_delta_room_minus && in_delta_room_plus) { | |||
// Let's see if 2*numerator < denominator. | |||
// If yes, then the next digit would be < 5 and we can round down. | |||
int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); | |||
if (compare < 0) { | |||
// Remaining digits are less than .5. -> Round down (== do nothing). | |||
} else if (compare > 0) { | |||
// Remaining digits are more than .5 of denominator. -> Round up. | |||
// Note that the last digit could not be a '9' as otherwise the whole | |||
// loop would have stopped earlier. | |||
// We still have an assert here in case the preconditions were not | |||
// satisfied. | |||
ASSERT(buffer[(*length) - 1] != '9'); | |||
buffer[(*length) - 1]++; | |||
} else { | |||
// Halfway case. | |||
// TODO(floitsch): need a way to solve half-way cases. | |||
// For now let's round towards even (since this is what Gay seems to | |||
// do). | |||
if ((buffer[(*length) - 1] - '0') % 2 == 0) { | |||
// Round down => Do nothing. | |||
} else { | |||
ASSERT(buffer[(*length) - 1] != '9'); | |||
buffer[(*length) - 1]++; | |||
} | |||
} | |||
return; | |||
} else if (in_delta_room_minus) { | |||
// Round down (== do nothing). | |||
return; | |||
} else { // in_delta_room_plus | |||
// Round up. | |||
// Note again that the last digit could not be '9' since this would have | |||
// stopped the loop earlier. | |||
// We still have an ASSERT here, in case the preconditions were not | |||
// satisfied. | |||
ASSERT(buffer[(*length) -1] != '9'); | |||
buffer[(*length) - 1]++; | |||
return; | |||
} | |||
} | |||
} | |||
// Let v = numerator / denominator < 10. | |||
// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) | |||
// from left to right. Once 'count' digits have been produced we decide wether | |||
// to round up or down. Remainders of exactly .5 round upwards. Numbers such | |||
// as 9.999999 propagate a carry all the way, and change the | |||
// exponent (decimal_point), when rounding upwards. | |||
static void GenerateCountedDigits(int count, int* decimal_point, | |||
Bignum* numerator, Bignum* denominator, | |||
Vector<char>(buffer), int* length) { | |||
ASSERT(count >= 0); | |||
for (int i = 0; i < count - 1; ++i) { | |||
uint16_t digit; | |||
digit = numerator->DivideModuloIntBignum(*denominator); | |||
ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. | |||
// digit = numerator / denominator (integer division). | |||
// numerator = numerator % denominator. | |||
buffer[i] = digit + '0'; | |||
// Prepare for next iteration. | |||
numerator->Times10(); | |||
} | |||
// Generate the last digit. | |||
uint16_t digit; | |||
digit = numerator->DivideModuloIntBignum(*denominator); | |||
if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { | |||
digit++; | |||
} | |||
buffer[count - 1] = digit + '0'; | |||
// Correct bad digits (in case we had a sequence of '9's). Propagate the | |||
// carry until we hat a non-'9' or til we reach the first digit. | |||
for (int i = count - 1; i > 0; --i) { | |||
if (buffer[i] != '0' + 10) break; | |||
buffer[i] = '0'; | |||
buffer[i - 1]++; | |||
} | |||
if (buffer[0] == '0' + 10) { | |||
// Propagate a carry past the top place. | |||
buffer[0] = '1'; | |||
(*decimal_point)++; | |||
} | |||
*length = count; | |||
} | |||
// Generates 'requested_digits' after the decimal point. It might omit | |||
// trailing '0's. If the input number is too small then no digits at all are | |||
// generated (ex.: 2 fixed digits for 0.00001). | |||
// | |||
// Input verifies: 1 <= (numerator + delta) / denominator < 10. | |||
static void BignumToFixed(int requested_digits, int* decimal_point, | |||
Bignum* numerator, Bignum* denominator, | |||
Vector<char>(buffer), int* length) { | |||
// Note that we have to look at more than just the requested_digits, since | |||
// a number could be rounded up. Example: v=0.5 with requested_digits=0. | |||
// Even though the power of v equals 0 we can't just stop here. | |||
if (-(*decimal_point) > requested_digits) { | |||
// The number is definitively too small. | |||
// Ex: 0.001 with requested_digits == 1. | |||
// Set decimal-point to -requested_digits. This is what Gay does. | |||
// Note that it should not have any effect anyways since the string is | |||
// empty. | |||
*decimal_point = -requested_digits; | |||
*length = 0; | |||
return; | |||
} else if (-(*decimal_point) == requested_digits) { | |||
// We only need to verify if the number rounds down or up. | |||
// Ex: 0.04 and 0.06 with requested_digits == 1. | |||
ASSERT(*decimal_point == -requested_digits); | |||
// Initially the fraction lies in range (1, 10]. Multiply the denominator | |||
// by 10 so that we can compare more easily. | |||
denominator->Times10(); | |||
if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { | |||
// If the fraction is >= 0.5 then we have to include the rounded | |||
// digit. | |||
buffer[0] = '1'; | |||
*length = 1; | |||
(*decimal_point)++; | |||
} else { | |||
// Note that we caught most of similar cases earlier. | |||
*length = 0; | |||
} | |||
return; | |||
} else { | |||
// The requested digits correspond to the digits after the point. | |||
// The variable 'needed_digits' includes the digits before the point. | |||
int needed_digits = (*decimal_point) + requested_digits; | |||
GenerateCountedDigits(needed_digits, decimal_point, | |||
numerator, denominator, | |||
buffer, length); | |||
} | |||
} | |||
// Returns an estimation of k such that 10^(k-1) <= v < 10^k where | |||
// v = f * 2^exponent and 2^52 <= f < 2^53. | |||
// v is hence a normalized double with the given exponent. The output is an | |||
// approximation for the exponent of the decimal approimation .digits * 10^k. | |||
// | |||
// The result might undershoot by 1 in which case 10^k <= v < 10^k+1. | |||
// Note: this property holds for v's upper boundary m+ too. | |||
// 10^k <= m+ < 10^k+1. | |||
// (see explanation below). | |||
// | |||
// Examples: | |||
// EstimatePower(0) => 16 | |||
// EstimatePower(-52) => 0 | |||
// | |||
// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. | |||
static int EstimatePower(int exponent) { | |||
// This function estimates log10 of v where v = f*2^e (with e == exponent). | |||
// Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). | |||
// Note that f is bounded by its container size. Let p = 53 (the double's | |||
// significand size). Then 2^(p-1) <= f < 2^p. | |||
// | |||
// Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close | |||
// to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). | |||
// The computed number undershoots by less than 0.631 (when we compute log3 | |||
// and not log10). | |||
// | |||
// Optimization: since we only need an approximated result this computation | |||
// can be performed on 64 bit integers. On x86/x64 architecture the speedup is | |||
// not really measurable, though. | |||
// | |||
// Since we want to avoid overshooting we decrement by 1e10 so that | |||
// floating-point imprecisions don't affect us. | |||
// | |||
// Explanation for v's boundary m+: the computation takes advantage of | |||
// the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement | |||
// (even for denormals where the delta can be much more important). | |||
const double k1Log10 = 0.30102999566398114; // 1/lg(10) | |||
// For doubles len(f) == 53 (don't forget the hidden bit). | |||
const int kSignificandSize = Double::kSignificandSize; | |||
double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); | |||
return static_cast<int>(estimate); | |||
} | |||
// See comments for InitialScaledStartValues. | |||
static void InitialScaledStartValuesPositiveExponent( | |||
uint64_t significand, int exponent, | |||
int estimated_power, bool need_boundary_deltas, | |||
Bignum* numerator, Bignum* denominator, | |||
Bignum* delta_minus, Bignum* delta_plus) { | |||
// A positive exponent implies a positive power. | |||
ASSERT(estimated_power >= 0); | |||
// Since the estimated_power is positive we simply multiply the denominator | |||
// by 10^estimated_power. | |||
// numerator = v. | |||
numerator->AssignUInt64(significand); | |||
numerator->ShiftLeft(exponent); | |||
// denominator = 10^estimated_power. | |||
denominator->AssignPowerUInt16(10, estimated_power); | |||
if (need_boundary_deltas) { | |||
// Introduce a common denominator so that the deltas to the boundaries are | |||
// integers. | |||
denominator->ShiftLeft(1); | |||
numerator->ShiftLeft(1); | |||
// Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common | |||
// denominator (of 2) delta_plus equals 2^e. | |||
delta_plus->AssignUInt16(1); | |||
delta_plus->ShiftLeft(exponent); | |||
// Same for delta_minus. The adjustments if f == 2^p-1 are done later. | |||
delta_minus->AssignUInt16(1); | |||
delta_minus->ShiftLeft(exponent); | |||
} | |||
} | |||
// See comments for InitialScaledStartValues | |||
static void InitialScaledStartValuesNegativeExponentPositivePower( | |||
uint64_t significand, int exponent, | |||
int estimated_power, bool need_boundary_deltas, | |||
Bignum* numerator, Bignum* denominator, | |||
Bignum* delta_minus, Bignum* delta_plus) { | |||
// v = f * 2^e with e < 0, and with estimated_power >= 0. | |||
// This means that e is close to 0 (have a look at how estimated_power is | |||
// computed). | |||
// numerator = significand | |||
// since v = significand * 2^exponent this is equivalent to | |||
// numerator = v * / 2^-exponent | |||
numerator->AssignUInt64(significand); | |||
// denominator = 10^estimated_power * 2^-exponent (with exponent < 0) | |||
denominator->AssignPowerUInt16(10, estimated_power); | |||
denominator->ShiftLeft(-exponent); | |||
if (need_boundary_deltas) { | |||
// Introduce a common denominator so that the deltas to the boundaries are | |||
// integers. | |||
denominator->ShiftLeft(1); | |||
numerator->ShiftLeft(1); | |||
// Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common | |||
// denominator (of 2) delta_plus equals 2^e. | |||
// Given that the denominator already includes v's exponent the distance | |||
// to the boundaries is simply 1. | |||
delta_plus->AssignUInt16(1); | |||
// Same for delta_minus. The adjustments if f == 2^p-1 are done later. | |||
delta_minus->AssignUInt16(1); | |||
} | |||
} | |||
// See comments for InitialScaledStartValues | |||
static void InitialScaledStartValuesNegativeExponentNegativePower( | |||
uint64_t significand, int exponent, | |||
int estimated_power, bool need_boundary_deltas, | |||
Bignum* numerator, Bignum* denominator, | |||
Bignum* delta_minus, Bignum* delta_plus) { | |||
// Instead of multiplying the denominator with 10^estimated_power we | |||
// multiply all values (numerator and deltas) by 10^-estimated_power. | |||
// Use numerator as temporary container for power_ten. | |||
Bignum* power_ten = numerator; | |||
power_ten->AssignPowerUInt16(10, -estimated_power); | |||
if (need_boundary_deltas) { | |||
// Since power_ten == numerator we must make a copy of 10^estimated_power | |||
// before we complete the computation of the numerator. | |||
// delta_plus = delta_minus = 10^estimated_power | |||
delta_plus->AssignBignum(*power_ten); | |||
delta_minus->AssignBignum(*power_ten); | |||
} | |||
// numerator = significand * 2 * 10^-estimated_power | |||
// since v = significand * 2^exponent this is equivalent to | |||
// numerator = v * 10^-estimated_power * 2 * 2^-exponent. | |||
// Remember: numerator has been abused as power_ten. So no need to assign it | |||
// to itself. | |||
ASSERT(numerator == power_ten); | |||
numerator->MultiplyByUInt64(significand); | |||
// denominator = 2 * 2^-exponent with exponent < 0. | |||
denominator->AssignUInt16(1); | |||
denominator->ShiftLeft(-exponent); | |||
if (need_boundary_deltas) { | |||
// Introduce a common denominator so that the deltas to the boundaries are | |||
// integers. | |||
numerator->ShiftLeft(1); | |||
denominator->ShiftLeft(1); | |||
// With this shift the boundaries have their correct value, since | |||
// delta_plus = 10^-estimated_power, and | |||
// delta_minus = 10^-estimated_power. | |||
// These assignments have been done earlier. | |||
// The adjustments if f == 2^p-1 (lower boundary is closer) are done later. | |||
} | |||
} | |||
// Let v = significand * 2^exponent. | |||
// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator | |||
// and denominator. The functions GenerateShortestDigits and | |||
// GenerateCountedDigits will then convert this ratio to its decimal | |||
// representation d, with the required accuracy. | |||
// Then d * 10^estimated_power is the representation of v. | |||
// (Note: the fraction and the estimated_power might get adjusted before | |||
// generating the decimal representation.) | |||
// | |||
// The initial start values consist of: | |||
// - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. | |||
// - a scaled (common) denominator. | |||
// optionally (used by GenerateShortestDigits to decide if it has the shortest | |||
// decimal converting back to v): | |||
// - v - m-: the distance to the lower boundary. | |||
// - m+ - v: the distance to the upper boundary. | |||
// | |||
// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator. | |||
// | |||
// Let ep == estimated_power, then the returned values will satisfy: | |||
// v / 10^ep = numerator / denominator. | |||
// v's boundarys m- and m+: | |||
// m- / 10^ep == v / 10^ep - delta_minus / denominator | |||
// m+ / 10^ep == v / 10^ep + delta_plus / denominator | |||
// Or in other words: | |||
// m- == v - delta_minus * 10^ep / denominator; | |||
// m+ == v + delta_plus * 10^ep / denominator; | |||
// | |||
// Since 10^(k-1) <= v < 10^k (with k == estimated_power) | |||
// or 10^k <= v < 10^(k+1) | |||
// we then have 0.1 <= numerator/denominator < 1 | |||
// or 1 <= numerator/denominator < 10 | |||
// | |||
// It is then easy to kickstart the digit-generation routine. | |||
// | |||
// The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST | |||
// or BIGNUM_DTOA_SHORTEST_SINGLE. | |||
static void InitialScaledStartValues(uint64_t significand, | |||
int exponent, | |||
bool lower_boundary_is_closer, | |||
int estimated_power, | |||
bool need_boundary_deltas, | |||
Bignum* numerator, | |||
Bignum* denominator, | |||
Bignum* delta_minus, | |||
Bignum* delta_plus) { | |||
if (exponent >= 0) { | |||
InitialScaledStartValuesPositiveExponent( | |||
significand, exponent, estimated_power, need_boundary_deltas, | |||
numerator, denominator, delta_minus, delta_plus); | |||
} else if (estimated_power >= 0) { | |||
InitialScaledStartValuesNegativeExponentPositivePower( | |||
significand, exponent, estimated_power, need_boundary_deltas, | |||
numerator, denominator, delta_minus, delta_plus); | |||
} else { | |||
InitialScaledStartValuesNegativeExponentNegativePower( | |||
significand, exponent, estimated_power, need_boundary_deltas, | |||
numerator, denominator, delta_minus, delta_plus); | |||
} | |||
if (need_boundary_deltas && lower_boundary_is_closer) { | |||
// The lower boundary is closer at half the distance of "normal" numbers. | |||
// Increase the common denominator and adapt all but the delta_minus. | |||
denominator->ShiftLeft(1); // *2 | |||
numerator->ShiftLeft(1); // *2 | |||
delta_plus->ShiftLeft(1); // *2 | |||
} | |||
} | |||
// This routine multiplies numerator/denominator so that its values lies in the | |||
// range 1-10. That is after a call to this function we have: | |||
// 1 <= (numerator + delta_plus) /denominator < 10. | |||
// Let numerator the input before modification and numerator' the argument | |||
// after modification, then the output-parameter decimal_point is such that | |||
// numerator / denominator * 10^estimated_power == | |||
// numerator' / denominator' * 10^(decimal_point - 1) | |||
// In some cases estimated_power was too low, and this is already the case. We | |||
// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == | |||
// estimated_power) but do not touch the numerator or denominator. | |||
// Otherwise the routine multiplies the numerator and the deltas by 10. | |||
static void FixupMultiply10(int estimated_power, bool is_even, | |||
int* decimal_point, | |||
Bignum* numerator, Bignum* denominator, | |||
Bignum* delta_minus, Bignum* delta_plus) { | |||
bool in_range; | |||
if (is_even) { | |||
// For IEEE doubles half-way cases (in decimal system numbers ending with 5) | |||
// are rounded to the closest floating-point number with even significand. | |||
in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; | |||
} else { | |||
in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; | |||
} | |||
if (in_range) { | |||
// Since numerator + delta_plus >= denominator we already have | |||
// 1 <= numerator/denominator < 10. Simply update the estimated_power. | |||
*decimal_point = estimated_power + 1; | |||
} else { | |||
*decimal_point = estimated_power; | |||
numerator->Times10(); | |||
if (Bignum::Equal(*delta_minus, *delta_plus)) { | |||
delta_minus->Times10(); | |||
delta_plus->AssignBignum(*delta_minus); | |||
} else { | |||
delta_minus->Times10(); | |||
delta_plus->Times10(); | |||
} | |||
} | |||
} | |||
} // namespace double_conversion |
@ -0,0 +1,84 @@ | |||
// Copyright 2010 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#ifndef DOUBLE_CONVERSION_BIGNUM_DTOA_H_ | |||
#define DOUBLE_CONVERSION_BIGNUM_DTOA_H_ | |||
#include "utils.h" | |||
namespace double_conversion { | |||
enum BignumDtoaMode { | |||
// Return the shortest correct representation. | |||
// For example the output of 0.299999999999999988897 is (the less accurate but | |||
// correct) 0.3. | |||
BIGNUM_DTOA_SHORTEST, | |||
// Same as BIGNUM_DTOA_SHORTEST but for single-precision floats. | |||
BIGNUM_DTOA_SHORTEST_SINGLE, | |||
// Return a fixed number of digits after the decimal point. | |||
// For instance fixed(0.1, 4) becomes 0.1000 | |||
// If the input number is big, the output will be big. | |||
BIGNUM_DTOA_FIXED, | |||
// Return a fixed number of digits, no matter what the exponent is. | |||
BIGNUM_DTOA_PRECISION | |||
}; | |||
// Converts the given double 'v' to ascii. | |||
// The result should be interpreted as buffer * 10^(point-length). | |||
// The buffer will be null-terminated. | |||
// | |||
// The input v must be > 0 and different from NaN, and Infinity. | |||
// | |||
// The output depends on the given mode: | |||
// - SHORTEST: produce the least amount of digits for which the internal | |||
// identity requirement is still satisfied. If the digits are printed | |||
// (together with the correct exponent) then reading this number will give | |||
// 'v' again. The buffer will choose the representation that is closest to | |||
// 'v'. If there are two at the same distance, than the number is round up. | |||
// In this mode the 'requested_digits' parameter is ignored. | |||
// - FIXED: produces digits necessary to print a given number with | |||
// 'requested_digits' digits after the decimal point. The produced digits | |||
// might be too short in which case the caller has to fill the gaps with '0's. | |||
// Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2. | |||
// Halfway cases are rounded up. The call toFixed(0.15, 2) thus returns | |||
// buffer="2", point=0. | |||
// Note: the length of the returned buffer has no meaning wrt the significance | |||
// of its digits. That is, just because it contains '0's does not mean that | |||
// any other digit would not satisfy the internal identity requirement. | |||
// - PRECISION: produces 'requested_digits' where the first digit is not '0'. | |||
// Even though the length of produced digits usually equals | |||
// 'requested_digits', the function is allowed to return fewer digits, in | |||
// which case the caller has to fill the missing digits with '0's. | |||
// Halfway cases are again rounded up. | |||
// 'BignumDtoa' expects the given buffer to be big enough to hold all digits | |||
// and a terminating null-character. | |||
void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, | |||
Vector<char> buffer, int* length, int* point); | |||
} // namespace double_conversion | |||
#endif // DOUBLE_CONVERSION_BIGNUM_DTOA_H_ |
@ -0,0 +1,764 @@ | |||
// Copyright 2010 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#include "bignum.h" | |||
#include "utils.h" | |||
namespace double_conversion { | |||
Bignum::Bignum() | |||
: bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) { | |||
for (int i = 0; i < kBigitCapacity; ++i) { | |||
bigits_[i] = 0; | |||
} | |||
} | |||
template<typename S> | |||
static int BitSize(S value) { | |||
return 8 * sizeof(value); | |||
} | |||
// Guaranteed to lie in one Bigit. | |||
void Bignum::AssignUInt16(uint16_t value) { | |||
ASSERT(kBigitSize >= BitSize(value)); | |||
Zero(); | |||
if (value == 0) return; | |||
EnsureCapacity(1); | |||
bigits_[0] = value; | |||
used_digits_ = 1; | |||
} | |||
void Bignum::AssignUInt64(uint64_t value) { | |||
const int kUInt64Size = 64; | |||
Zero(); | |||
if (value == 0) return; | |||
int needed_bigits = kUInt64Size / kBigitSize + 1; | |||
EnsureCapacity(needed_bigits); | |||
for (int i = 0; i < needed_bigits; ++i) { | |||
bigits_[i] = value & kBigitMask; | |||
value = value >> kBigitSize; | |||
} | |||
used_digits_ = needed_bigits; | |||
Clamp(); | |||
} | |||
void Bignum::AssignBignum(const Bignum& other) { | |||
exponent_ = other.exponent_; | |||
for (int i = 0; i < other.used_digits_; ++i) { | |||
bigits_[i] = other.bigits_[i]; | |||
} | |||
// Clear the excess digits (if there were any). | |||
for (int i = other.used_digits_; i < used_digits_; ++i) { | |||
bigits_[i] = 0; | |||
} | |||
used_digits_ = other.used_digits_; | |||
} | |||
static uint64_t ReadUInt64(Vector<const char> buffer, | |||
int from, | |||
int digits_to_read) { | |||
uint64_t result = 0; | |||
for (int i = from; i < from + digits_to_read; ++i) { | |||
int digit = buffer[i] - '0'; | |||
ASSERT(0 <= digit && digit <= 9); | |||
result = result * 10 + digit; | |||
} | |||
return result; | |||
} | |||
void Bignum::AssignDecimalString(Vector<const char> value) { | |||
// 2^64 = 18446744073709551616 > 10^19 | |||
const int kMaxUint64DecimalDigits = 19; | |||
Zero(); | |||
int length = value.length(); | |||
int pos = 0; | |||
// Let's just say that each digit needs 4 bits. | |||
while (length >= kMaxUint64DecimalDigits) { | |||
uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); | |||
pos += kMaxUint64DecimalDigits; | |||
length -= kMaxUint64DecimalDigits; | |||
MultiplyByPowerOfTen(kMaxUint64DecimalDigits); | |||
AddUInt64(digits); | |||
} | |||
uint64_t digits = ReadUInt64(value, pos, length); | |||
MultiplyByPowerOfTen(length); | |||
AddUInt64(digits); | |||
Clamp(); | |||
} | |||
static int HexCharValue(char c) { | |||
if ('0' <= c && c <= '9') return c - '0'; | |||
if ('a' <= c && c <= 'f') return 10 + c - 'a'; | |||
if ('A' <= c && c <= 'F') return 10 + c - 'A'; | |||
UNREACHABLE(); | |||
return 0; // To make compiler happy. | |||
} | |||
void Bignum::AssignHexString(Vector<const char> value) { | |||
Zero(); | |||
int length = value.length(); | |||
int needed_bigits = length * 4 / kBigitSize + 1; | |||
EnsureCapacity(needed_bigits); | |||
int string_index = length - 1; | |||
for (int i = 0; i < needed_bigits - 1; ++i) { | |||
// These bigits are guaranteed to be "full". | |||
Chunk current_bigit = 0; | |||
for (int j = 0; j < kBigitSize / 4; j++) { | |||
current_bigit += HexCharValue(value[string_index--]) << (j * 4); | |||
} | |||
bigits_[i] = current_bigit; | |||
} | |||
used_digits_ = needed_bigits - 1; | |||
Chunk most_significant_bigit = 0; // Could be = 0; | |||
for (int j = 0; j <= string_index; ++j) { | |||
most_significant_bigit <<= 4; | |||
most_significant_bigit += HexCharValue(value[j]); | |||
} | |||
if (most_significant_bigit != 0) { | |||
bigits_[used_digits_] = most_significant_bigit; | |||
used_digits_++; | |||
} | |||
Clamp(); | |||
} | |||
void Bignum::AddUInt64(uint64_t operand) { | |||
if (operand == 0) return; | |||
Bignum other; | |||
other.AssignUInt64(operand); | |||
AddBignum(other); | |||
} | |||
void Bignum::AddBignum(const Bignum& other) { | |||
ASSERT(IsClamped()); | |||
ASSERT(other.IsClamped()); | |||
// If this has a greater exponent than other append zero-bigits to this. | |||
// After this call exponent_ <= other.exponent_. | |||
Align(other); | |||
// There are two possibilities: | |||
// aaaaaaaaaaa 0000 (where the 0s represent a's exponent) | |||
// bbbbb 00000000 | |||
// ---------------- | |||
// ccccccccccc 0000 | |||
// or | |||
// aaaaaaaaaa 0000 | |||
// bbbbbbbbb 0000000 | |||
// ----------------- | |||
// cccccccccccc 0000 | |||
// In both cases we might need a carry bigit. | |||
EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); | |||
Chunk carry = 0; | |||
int bigit_pos = other.exponent_ - exponent_; | |||
ASSERT(bigit_pos >= 0); | |||
for (int i = 0; i < other.used_digits_; ++i) { | |||
Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; | |||
bigits_[bigit_pos] = sum & kBigitMask; | |||
carry = sum >> kBigitSize; | |||
bigit_pos++; | |||
} | |||
while (carry != 0) { | |||
Chunk sum = bigits_[bigit_pos] + carry; | |||
bigits_[bigit_pos] = sum & kBigitMask; | |||
carry = sum >> kBigitSize; | |||
bigit_pos++; | |||
} | |||
used_digits_ = Max(bigit_pos, used_digits_); | |||
ASSERT(IsClamped()); | |||
} | |||
void Bignum::SubtractBignum(const Bignum& other) { | |||
ASSERT(IsClamped()); | |||
ASSERT(other.IsClamped()); | |||
// We require this to be bigger than other. | |||
ASSERT(LessEqual(other, *this)); | |||
Align(other); | |||
int offset = other.exponent_ - exponent_; | |||
Chunk borrow = 0; | |||
int i; | |||
for (i = 0; i < other.used_digits_; ++i) { | |||
ASSERT((borrow == 0) || (borrow == 1)); | |||
Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; | |||
bigits_[i + offset] = difference & kBigitMask; | |||
borrow = difference >> (kChunkSize - 1); | |||
} | |||
while (borrow != 0) { | |||
Chunk difference = bigits_[i + offset] - borrow; | |||
bigits_[i + offset] = difference & kBigitMask; | |||
borrow = difference >> (kChunkSize - 1); | |||
++i; | |||
} | |||
Clamp(); | |||
} | |||
void Bignum::ShiftLeft(int shift_amount) { | |||
if (used_digits_ == 0) return; | |||
exponent_ += shift_amount / kBigitSize; | |||
int local_shift = shift_amount % kBigitSize; | |||
EnsureCapacity(used_digits_ + 1); | |||
BigitsShiftLeft(local_shift); | |||
} | |||
void Bignum::MultiplyByUInt32(uint32_t factor) { | |||
if (factor == 1) return; | |||
if (factor == 0) { | |||
Zero(); | |||
return; | |||
} | |||
if (used_digits_ == 0) return; | |||
// The product of a bigit with the factor is of size kBigitSize + 32. | |||
// Assert that this number + 1 (for the carry) fits into double chunk. | |||
ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1); | |||
DoubleChunk carry = 0; | |||
for (int i = 0; i < used_digits_; ++i) { | |||
DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry; | |||
bigits_[i] = static_cast<Chunk>(product & kBigitMask); | |||
carry = (product >> kBigitSize); | |||
} | |||
while (carry != 0) { | |||
EnsureCapacity(used_digits_ + 1); | |||
bigits_[used_digits_] = carry & kBigitMask; | |||
used_digits_++; | |||
carry >>= kBigitSize; | |||
} | |||
} | |||
void Bignum::MultiplyByUInt64(uint64_t factor) { | |||
if (factor == 1) return; | |||
if (factor == 0) { | |||
Zero(); | |||
return; | |||
} | |||
ASSERT(kBigitSize < 32); | |||
uint64_t carry = 0; | |||
uint64_t low = factor & 0xFFFFFFFF; | |||
uint64_t high = factor >> 32; | |||
for (int i = 0; i < used_digits_; ++i) { | |||
uint64_t product_low = low * bigits_[i]; | |||
uint64_t product_high = high * bigits_[i]; | |||
uint64_t tmp = (carry & kBigitMask) + product_low; | |||
bigits_[i] = tmp & kBigitMask; | |||
carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + | |||
(product_high << (32 - kBigitSize)); | |||
} | |||
while (carry != 0) { | |||
EnsureCapacity(used_digits_ + 1); | |||
bigits_[used_digits_] = carry & kBigitMask; | |||
used_digits_++; | |||
carry >>= kBigitSize; | |||
} | |||
} | |||
void Bignum::MultiplyByPowerOfTen(int exponent) { | |||
const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d); | |||
const uint16_t kFive1 = 5; | |||
const uint16_t kFive2 = kFive1 * 5; | |||
const uint16_t kFive3 = kFive2 * 5; | |||
const uint16_t kFive4 = kFive3 * 5; | |||
const uint16_t kFive5 = kFive4 * 5; | |||
const uint16_t kFive6 = kFive5 * 5; | |||
const uint32_t kFive7 = kFive6 * 5; | |||
const uint32_t kFive8 = kFive7 * 5; | |||
const uint32_t kFive9 = kFive8 * 5; | |||
const uint32_t kFive10 = kFive9 * 5; | |||
const uint32_t kFive11 = kFive10 * 5; | |||
const uint32_t kFive12 = kFive11 * 5; | |||
const uint32_t kFive13 = kFive12 * 5; | |||
const uint32_t kFive1_to_12[] = | |||
{ kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, | |||
kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; | |||
ASSERT(exponent >= 0); | |||
if (exponent == 0) return; | |||
if (used_digits_ == 0) return; | |||
// We shift by exponent at the end just before returning. | |||
int remaining_exponent = exponent; | |||
while (remaining_exponent >= 27) { | |||
MultiplyByUInt64(kFive27); | |||
remaining_exponent -= 27; | |||
} | |||
while (remaining_exponent >= 13) { | |||
MultiplyByUInt32(kFive13); | |||
remaining_exponent -= 13; | |||
} | |||
if (remaining_exponent > 0) { | |||
MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); | |||
} | |||
ShiftLeft(exponent); | |||
} | |||
void Bignum::Square() { | |||
ASSERT(IsClamped()); | |||
int product_length = 2 * used_digits_; | |||
EnsureCapacity(product_length); | |||
// Comba multiplication: compute each column separately. | |||
// Example: r = a2a1a0 * b2b1b0. | |||
// r = 1 * a0b0 + | |||
// 10 * (a1b0 + a0b1) + | |||
// 100 * (a2b0 + a1b1 + a0b2) + | |||
// 1000 * (a2b1 + a1b2) + | |||
// 10000 * a2b2 | |||
// | |||
// In the worst case we have to accumulate nb-digits products of digit*digit. | |||
// | |||
// Assert that the additional number of bits in a DoubleChunk are enough to | |||
// sum up used_digits of Bigit*Bigit. | |||
if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { | |||
UNIMPLEMENTED(); | |||
} | |||
DoubleChunk accumulator = 0; | |||
// First shift the digits so we don't overwrite them. | |||
int copy_offset = used_digits_; | |||
for (int i = 0; i < used_digits_; ++i) { | |||
bigits_[copy_offset + i] = bigits_[i]; | |||
} | |||
// We have two loops to avoid some 'if's in the loop. | |||
for (int i = 0; i < used_digits_; ++i) { | |||
// Process temporary digit i with power i. | |||
// The sum of the two indices must be equal to i. | |||
int bigit_index1 = i; | |||
int bigit_index2 = 0; | |||
// Sum all of the sub-products. | |||
while (bigit_index1 >= 0) { | |||
Chunk chunk1 = bigits_[copy_offset + bigit_index1]; | |||
Chunk chunk2 = bigits_[copy_offset + bigit_index2]; | |||
accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; | |||
bigit_index1--; | |||
bigit_index2++; | |||
} | |||
bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; | |||
accumulator >>= kBigitSize; | |||
} | |||
for (int i = used_digits_; i < product_length; ++i) { | |||
int bigit_index1 = used_digits_ - 1; | |||
int bigit_index2 = i - bigit_index1; | |||
// Invariant: sum of both indices is again equal to i. | |||
// Inner loop runs 0 times on last iteration, emptying accumulator. | |||
while (bigit_index2 < used_digits_) { | |||
Chunk chunk1 = bigits_[copy_offset + bigit_index1]; | |||
Chunk chunk2 = bigits_[copy_offset + bigit_index2]; | |||
accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; | |||
bigit_index1--; | |||
bigit_index2++; | |||
} | |||
// The overwritten bigits_[i] will never be read in further loop iterations, | |||
// because bigit_index1 and bigit_index2 are always greater | |||
// than i - used_digits_. | |||
bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; | |||
accumulator >>= kBigitSize; | |||
} | |||
// Since the result was guaranteed to lie inside the number the | |||
// accumulator must be 0 now. | |||
ASSERT(accumulator == 0); | |||
// Don't forget to update the used_digits and the exponent. | |||
used_digits_ = product_length; | |||
exponent_ *= 2; | |||
Clamp(); | |||
} | |||
void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { | |||
ASSERT(base != 0); | |||
ASSERT(power_exponent >= 0); | |||
if (power_exponent == 0) { | |||
AssignUInt16(1); | |||
return; | |||
} | |||
Zero(); | |||
int shifts = 0; | |||
// We expect base to be in range 2-32, and most often to be 10. | |||
// It does not make much sense to implement different algorithms for counting | |||
// the bits. | |||
while ((base & 1) == 0) { | |||
base >>= 1; | |||
shifts++; | |||
} | |||
int bit_size = 0; | |||
int tmp_base = base; | |||
while (tmp_base != 0) { | |||
tmp_base >>= 1; | |||
bit_size++; | |||
} | |||
int final_size = bit_size * power_exponent; | |||
// 1 extra bigit for the shifting, and one for rounded final_size. | |||
EnsureCapacity(final_size / kBigitSize + 2); | |||
// Left to Right exponentiation. | |||
int mask = 1; | |||
while (power_exponent >= mask) mask <<= 1; | |||
// The mask is now pointing to the bit above the most significant 1-bit of | |||
// power_exponent. | |||
// Get rid of first 1-bit; | |||
mask >>= 2; | |||
uint64_t this_value = base; | |||
bool delayed_multipliciation = false; | |||
const uint64_t max_32bits = 0xFFFFFFFF; | |||
while (mask != 0 && this_value <= max_32bits) { | |||
this_value = this_value * this_value; | |||
// Verify that there is enough space in this_value to perform the | |||
// multiplication. The first bit_size bits must be 0. | |||
if ((power_exponent & mask) != 0) { | |||
uint64_t base_bits_mask = | |||
~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); | |||
bool high_bits_zero = (this_value & base_bits_mask) == 0; | |||
if (high_bits_zero) { | |||
this_value *= base; | |||
} else { | |||
delayed_multipliciation = true; | |||
} | |||
} | |||
mask >>= 1; | |||
} | |||
AssignUInt64(this_value); | |||
if (delayed_multipliciation) { | |||
MultiplyByUInt32(base); | |||
} | |||
// Now do the same thing as a bignum. | |||
while (mask != 0) { | |||
Square(); | |||
if ((power_exponent & mask) != 0) { | |||
MultiplyByUInt32(base); | |||
} | |||
mask >>= 1; | |||
} | |||
// And finally add the saved shifts. | |||
ShiftLeft(shifts * power_exponent); | |||
} | |||
// Precondition: this/other < 16bit. | |||
uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { | |||
ASSERT(IsClamped()); | |||
ASSERT(other.IsClamped()); | |||
ASSERT(other.used_digits_ > 0); | |||
// Easy case: if we have less digits than the divisor than the result is 0. | |||
// Note: this handles the case where this == 0, too. | |||
if (BigitLength() < other.BigitLength()) { | |||
return 0; | |||
} | |||
Align(other); | |||
uint16_t result = 0; | |||
// Start by removing multiples of 'other' until both numbers have the same | |||
// number of digits. | |||
while (BigitLength() > other.BigitLength()) { | |||
// This naive approach is extremely inefficient if the this divided other | |||
// might be big. This function is implemented for doubleToString where | |||
// the result should be small (less than 10). | |||
ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); | |||
// Remove the multiples of the first digit. | |||
// Example this = 23 and other equals 9. -> Remove 2 multiples. | |||
result += bigits_[used_digits_ - 1]; | |||
SubtractTimes(other, bigits_[used_digits_ - 1]); | |||
} | |||
ASSERT(BigitLength() == other.BigitLength()); | |||
// Both bignums are at the same length now. | |||
// Since other has more than 0 digits we know that the access to | |||
// bigits_[used_digits_ - 1] is safe. | |||
Chunk this_bigit = bigits_[used_digits_ - 1]; | |||
Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; | |||
if (other.used_digits_ == 1) { | |||
// Shortcut for easy (and common) case. | |||
int quotient = this_bigit / other_bigit; | |||
bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; | |||
result += quotient; | |||
Clamp(); | |||
return result; | |||
} | |||
int division_estimate = this_bigit / (other_bigit + 1); | |||
result += division_estimate; | |||
SubtractTimes(other, division_estimate); | |||
if (other_bigit * (division_estimate + 1) > this_bigit) { | |||
// No need to even try to subtract. Even if other's remaining digits were 0 | |||
// another subtraction would be too much. | |||
return result; | |||
} | |||
while (LessEqual(other, *this)) { | |||
SubtractBignum(other); | |||
result++; | |||
} | |||
return result; | |||
} | |||
template<typename S> | |||
static int SizeInHexChars(S number) { | |||
ASSERT(number > 0); | |||
int result = 0; | |||
while (number != 0) { | |||
number >>= 4; | |||
result++; | |||
} | |||
return result; | |||
} | |||
static char HexCharOfValue(int value) { | |||
ASSERT(0 <= value && value <= 16); | |||
if (value < 10) return value + '0'; | |||
return value - 10 + 'A'; | |||
} | |||
bool Bignum::ToHexString(char* buffer, int buffer_size) const { | |||
ASSERT(IsClamped()); | |||
// Each bigit must be printable as separate hex-character. | |||
ASSERT(kBigitSize % 4 == 0); | |||
const int kHexCharsPerBigit = kBigitSize / 4; | |||
if (used_digits_ == 0) { | |||
if (buffer_size < 2) return false; | |||
buffer[0] = '0'; | |||
buffer[1] = '\0'; | |||
return true; | |||
} | |||
// We add 1 for the terminating '\0' character. | |||
int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + | |||
SizeInHexChars(bigits_[used_digits_ - 1]) + 1; | |||
if (needed_chars > buffer_size) return false; | |||
int string_index = needed_chars - 1; | |||
buffer[string_index--] = '\0'; | |||
for (int i = 0; i < exponent_; ++i) { | |||
for (int j = 0; j < kHexCharsPerBigit; ++j) { | |||
buffer[string_index--] = '0'; | |||
} | |||
} | |||
for (int i = 0; i < used_digits_ - 1; ++i) { | |||
Chunk current_bigit = bigits_[i]; | |||
for (int j = 0; j < kHexCharsPerBigit; ++j) { | |||
buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); | |||
current_bigit >>= 4; | |||
} | |||
} | |||
// And finally the last bigit. | |||
Chunk most_significant_bigit = bigits_[used_digits_ - 1]; | |||
while (most_significant_bigit != 0) { | |||
buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); | |||
most_significant_bigit >>= 4; | |||
} | |||
return true; | |||
} | |||
Bignum::Chunk Bignum::BigitAt(int index) const { | |||
if (index >= BigitLength()) return 0; | |||
if (index < exponent_) return 0; | |||
return bigits_[index - exponent_]; | |||
} | |||
int Bignum::Compare(const Bignum& a, const Bignum& b) { | |||
ASSERT(a.IsClamped()); | |||
ASSERT(b.IsClamped()); | |||
int bigit_length_a = a.BigitLength(); | |||
int bigit_length_b = b.BigitLength(); | |||
if (bigit_length_a < bigit_length_b) return -1; | |||
if (bigit_length_a > bigit_length_b) return +1; | |||
for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) { | |||
Chunk bigit_a = a.BigitAt(i); | |||
Chunk bigit_b = b.BigitAt(i); | |||
if (bigit_a < bigit_b) return -1; | |||
if (bigit_a > bigit_b) return +1; | |||
// Otherwise they are equal up to this digit. Try the next digit. | |||
} | |||
return 0; | |||
} | |||
int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { | |||
ASSERT(a.IsClamped()); | |||
ASSERT(b.IsClamped()); | |||
ASSERT(c.IsClamped()); | |||
if (a.BigitLength() < b.BigitLength()) { | |||
return PlusCompare(b, a, c); | |||
} | |||
if (a.BigitLength() + 1 < c.BigitLength()) return -1; | |||
if (a.BigitLength() > c.BigitLength()) return +1; | |||
// The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than | |||
// 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one | |||
// of 'a'. | |||
if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { | |||
return -1; | |||
} | |||
Chunk borrow = 0; | |||
// Starting at min_exponent all digits are == 0. So no need to compare them. | |||
int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); | |||
for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { | |||
Chunk chunk_a = a.BigitAt(i); | |||
Chunk chunk_b = b.BigitAt(i); | |||
Chunk chunk_c = c.BigitAt(i); | |||
Chunk sum = chunk_a + chunk_b; | |||
if (sum > chunk_c + borrow) { | |||
return +1; | |||
} else { | |||
borrow = chunk_c + borrow - sum; | |||
if (borrow > 1) return -1; | |||
borrow <<= kBigitSize; | |||
} | |||
} | |||
if (borrow == 0) return 0; | |||
return -1; | |||
} | |||
void Bignum::Clamp() { | |||
while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { | |||
used_digits_--; | |||
} | |||
if (used_digits_ == 0) { | |||
// Zero. | |||
exponent_ = 0; | |||
} | |||
} | |||
bool Bignum::IsClamped() const { | |||
return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; | |||
} | |||
void Bignum::Zero() { | |||
for (int i = 0; i < used_digits_; ++i) { | |||
bigits_[i] = 0; | |||
} | |||
used_digits_ = 0; | |||
exponent_ = 0; | |||
} | |||
void Bignum::Align(const Bignum& other) { | |||
if (exponent_ > other.exponent_) { | |||
// If "X" represents a "hidden" digit (by the exponent) then we are in the | |||
// following case (a == this, b == other): | |||
// a: aaaaaaXXXX or a: aaaaaXXX | |||
// b: bbbbbbX b: bbbbbbbbXX | |||
// We replace some of the hidden digits (X) of a with 0 digits. | |||
// a: aaaaaa000X or a: aaaaa0XX | |||
int zero_digits = exponent_ - other.exponent_; | |||
EnsureCapacity(used_digits_ + zero_digits); | |||
for (int i = used_digits_ - 1; i >= 0; --i) { | |||
bigits_[i + zero_digits] = bigits_[i]; | |||
} | |||
for (int i = 0; i < zero_digits; ++i) { | |||
bigits_[i] = 0; | |||
} | |||
used_digits_ += zero_digits; | |||
exponent_ -= zero_digits; | |||
ASSERT(used_digits_ >= 0); | |||
ASSERT(exponent_ >= 0); | |||
} | |||
} | |||
void Bignum::BigitsShiftLeft(int shift_amount) { | |||
ASSERT(shift_amount < kBigitSize); | |||
ASSERT(shift_amount >= 0); | |||
Chunk carry = 0; | |||
for (int i = 0; i < used_digits_; ++i) { | |||
Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); | |||
bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; | |||
carry = new_carry; | |||
} | |||
if (carry != 0) { | |||
bigits_[used_digits_] = carry; | |||
used_digits_++; | |||
} | |||
} | |||
void Bignum::SubtractTimes(const Bignum& other, int factor) { | |||
ASSERT(exponent_ <= other.exponent_); | |||
if (factor < 3) { | |||
for (int i = 0; i < factor; ++i) { | |||
SubtractBignum(other); | |||
} | |||
return; | |||
} | |||
Chunk borrow = 0; | |||
int exponent_diff = other.exponent_ - exponent_; | |||
for (int i = 0; i < other.used_digits_; ++i) { | |||
DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i]; | |||
DoubleChunk remove = borrow + product; | |||
Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask); | |||
bigits_[i + exponent_diff] = difference & kBigitMask; | |||
borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + | |||
(remove >> kBigitSize)); | |||
} | |||
for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { | |||
if (borrow == 0) return; | |||
Chunk difference = bigits_[i] - borrow; | |||
bigits_[i] = difference & kBigitMask; | |||
borrow = difference >> (kChunkSize - 1); | |||
++i; | |||
} | |||
Clamp(); | |||
} | |||
} // namespace double_conversion |
@ -0,0 +1,145 @@ | |||
// Copyright 2010 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#ifndef DOUBLE_CONVERSION_BIGNUM_H_ | |||
#define DOUBLE_CONVERSION_BIGNUM_H_ | |||
#include "utils.h" | |||
namespace double_conversion { | |||
class Bignum { | |||
public: | |||
// 3584 = 128 * 28. We can represent 2^3584 > 10^1000 accurately. | |||
// This bignum can encode much bigger numbers, since it contains an | |||
// exponent. | |||
static const int kMaxSignificantBits = 3584; | |||
Bignum(); | |||
void AssignUInt16(uint16_t value); | |||
void AssignUInt64(uint64_t value); | |||
void AssignBignum(const Bignum& other); | |||
void AssignDecimalString(Vector<const char> value); | |||
void AssignHexString(Vector<const char> value); | |||
void AssignPowerUInt16(uint16_t base, int exponent); | |||
void AddUInt16(uint16_t operand); | |||
void AddUInt64(uint64_t operand); | |||
void AddBignum(const Bignum& other); | |||
// Precondition: this >= other. | |||
void SubtractBignum(const Bignum& other); | |||
void Square(); | |||
void ShiftLeft(int shift_amount); | |||
void MultiplyByUInt32(uint32_t factor); | |||
void MultiplyByUInt64(uint64_t factor); | |||
void MultiplyByPowerOfTen(int exponent); | |||
void Times10() { return MultiplyByUInt32(10); } | |||
// Pseudocode: | |||
// int result = this / other; | |||
// this = this % other; | |||
// In the worst case this function is in O(this/other). | |||
uint16_t DivideModuloIntBignum(const Bignum& other); | |||
bool ToHexString(char* buffer, int buffer_size) const; | |||
// Returns | |||
// -1 if a < b, | |||
// 0 if a == b, and | |||
// +1 if a > b. | |||
static int Compare(const Bignum& a, const Bignum& b); | |||
static bool Equal(const Bignum& a, const Bignum& b) { | |||
return Compare(a, b) == 0; | |||
} | |||
static bool LessEqual(const Bignum& a, const Bignum& b) { | |||
return Compare(a, b) <= 0; | |||
} | |||
static bool Less(const Bignum& a, const Bignum& b) { | |||
return Compare(a, b) < 0; | |||
} | |||
// Returns Compare(a + b, c); | |||
static int PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c); | |||
// Returns a + b == c | |||
static bool PlusEqual(const Bignum& a, const Bignum& b, const Bignum& c) { | |||
return PlusCompare(a, b, c) == 0; | |||
} | |||
// Returns a + b <= c | |||
static bool PlusLessEqual(const Bignum& a, const Bignum& b, const Bignum& c) { | |||
return PlusCompare(a, b, c) <= 0; | |||
} | |||
// Returns a + b < c | |||
static bool PlusLess(const Bignum& a, const Bignum& b, const Bignum& c) { | |||
return PlusCompare(a, b, c) < 0; | |||
} | |||
private: | |||
typedef uint32_t Chunk; | |||
typedef uint64_t DoubleChunk; | |||
static const int kChunkSize = sizeof(Chunk) * 8; | |||
static const int kDoubleChunkSize = sizeof(DoubleChunk) * 8; | |||
// With bigit size of 28 we loose some bits, but a double still fits easily | |||
// into two chunks, and more importantly we can use the Comba multiplication. | |||
static const int kBigitSize = 28; | |||
static const Chunk kBigitMask = (1 << kBigitSize) - 1; | |||
// Every instance allocates kBigitLength chunks on the stack. Bignums cannot | |||
// grow. There are no checks if the stack-allocated space is sufficient. | |||
static const int kBigitCapacity = kMaxSignificantBits / kBigitSize; | |||
void EnsureCapacity(int size) { | |||
if (size > kBigitCapacity) { | |||
UNREACHABLE(); | |||
} | |||
} | |||
void Align(const Bignum& other); | |||
void Clamp(); | |||
bool IsClamped() const; | |||
void Zero(); | |||
// Requires this to have enough capacity (no tests done). | |||
// Updates used_digits_ if necessary. | |||
// shift_amount must be < kBigitSize. | |||
void BigitsShiftLeft(int shift_amount); | |||
// BigitLength includes the "hidden" digits encoded in the exponent. | |||
int BigitLength() const { return used_digits_ + exponent_; } | |||
Chunk BigitAt(int index) const; | |||
void SubtractTimes(const Bignum& other, int factor); | |||
Chunk bigits_buffer_[kBigitCapacity]; | |||
// A vector backed by bigits_buffer_. This way accesses to the array are | |||
// checked for out-of-bounds errors. | |||
Vector<Chunk> bigits_; | |||
int used_digits_; | |||
// The Bignum's value equals value(bigits_) * 2^(exponent_ * kBigitSize). | |||
int exponent_; | |||
DISALLOW_COPY_AND_ASSIGN(Bignum); | |||
}; | |||
} // namespace double_conversion | |||
#endif // DOUBLE_CONVERSION_BIGNUM_H_ |
@ -0,0 +1,175 @@ | |||
// Copyright 2006-2008 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#include <stdarg.h> | |||
#include <limits.h> | |||
#include <math.h> | |||
#include "utils.h" | |||
#include "cached-powers.h" | |||
namespace double_conversion { | |||
struct CachedPower { | |||
uint64_t significand; | |||
int16_t binary_exponent; | |||
int16_t decimal_exponent; | |||
}; | |||
static const CachedPower kCachedPowers[] = { | |||
{UINT64_2PART_C(0xfa8fd5a0, 081c0288), -1220, -348}, | |||
{UINT64_2PART_C(0xbaaee17f, a23ebf76), -1193, -340}, | |||
{UINT64_2PART_C(0x8b16fb20, 3055ac76), -1166, -332}, | |||
{UINT64_2PART_C(0xcf42894a, 5dce35ea), -1140, -324}, | |||
{UINT64_2PART_C(0x9a6bb0aa, 55653b2d), -1113, -316}, | |||
{UINT64_2PART_C(0xe61acf03, 3d1a45df), -1087, -308}, | |||
{UINT64_2PART_C(0xab70fe17, c79ac6ca), -1060, -300}, | |||
{UINT64_2PART_C(0xff77b1fc, bebcdc4f), -1034, -292}, | |||
{UINT64_2PART_C(0xbe5691ef, 416bd60c), -1007, -284}, | |||
{UINT64_2PART_C(0x8dd01fad, 907ffc3c), -980, -276}, | |||
{UINT64_2PART_C(0xd3515c28, 31559a83), -954, -268}, | |||
{UINT64_2PART_C(0x9d71ac8f, ada6c9b5), -927, -260}, | |||
{UINT64_2PART_C(0xea9c2277, 23ee8bcb), -901, -252}, | |||
{UINT64_2PART_C(0xaecc4991, 4078536d), -874, -244}, | |||
{UINT64_2PART_C(0x823c1279, 5db6ce57), -847, -236}, | |||
{UINT64_2PART_C(0xc2109436, 4dfb5637), -821, -228}, | |||
{UINT64_2PART_C(0x9096ea6f, 3848984f), -794, -220}, | |||
{UINT64_2PART_C(0xd77485cb, 25823ac7), -768, -212}, | |||
{UINT64_2PART_C(0xa086cfcd, 97bf97f4), -741, -204}, | |||
{UINT64_2PART_C(0xef340a98, 172aace5), -715, -196}, | |||
{UINT64_2PART_C(0xb23867fb, 2a35b28e), -688, -188}, | |||
{UINT64_2PART_C(0x84c8d4df, d2c63f3b), -661, -180}, | |||
{UINT64_2PART_C(0xc5dd4427, 1ad3cdba), -635, -172}, | |||
{UINT64_2PART_C(0x936b9fce, bb25c996), -608, -164}, | |||
{UINT64_2PART_C(0xdbac6c24, 7d62a584), -582, -156}, | |||
{UINT64_2PART_C(0xa3ab6658, 0d5fdaf6), -555, -148}, | |||
{UINT64_2PART_C(0xf3e2f893, dec3f126), -529, -140}, | |||
{UINT64_2PART_C(0xb5b5ada8, aaff80b8), -502, -132}, | |||
{UINT64_2PART_C(0x87625f05, 6c7c4a8b), -475, -124}, | |||
{UINT64_2PART_C(0xc9bcff60, 34c13053), -449, -116}, | |||
{UINT64_2PART_C(0x964e858c, 91ba2655), -422, -108}, | |||
{UINT64_2PART_C(0xdff97724, 70297ebd), -396, -100}, | |||
{UINT64_2PART_C(0xa6dfbd9f, b8e5b88f), -369, -92}, | |||
{UINT64_2PART_C(0xf8a95fcf, 88747d94), -343, -84}, | |||
{UINT64_2PART_C(0xb9447093, 8fa89bcf), -316, -76}, | |||
{UINT64_2PART_C(0x8a08f0f8, bf0f156b), -289, -68}, | |||
{UINT64_2PART_C(0xcdb02555, 653131b6), -263, -60}, | |||
{UINT64_2PART_C(0x993fe2c6, d07b7fac), -236, -52}, | |||
{UINT64_2PART_C(0xe45c10c4, 2a2b3b06), -210, -44}, | |||
{UINT64_2PART_C(0xaa242499, 697392d3), -183, -36}, | |||
{UINT64_2PART_C(0xfd87b5f2, 8300ca0e), -157, -28}, | |||
{UINT64_2PART_C(0xbce50864, 92111aeb), -130, -20}, | |||
{UINT64_2PART_C(0x8cbccc09, 6f5088cc), -103, -12}, | |||
{UINT64_2PART_C(0xd1b71758, e219652c), -77, -4}, | |||
{UINT64_2PART_C(0x9c400000, 00000000), -50, 4}, | |||
{UINT64_2PART_C(0xe8d4a510, 00000000), -24, 12}, | |||
{UINT64_2PART_C(0xad78ebc5, ac620000), 3, 20}, | |||
{UINT64_2PART_C(0x813f3978, f8940984), 30, 28}, | |||
{UINT64_2PART_C(0xc097ce7b, c90715b3), 56, 36}, | |||
{UINT64_2PART_C(0x8f7e32ce, 7bea5c70), 83, 44}, | |||
{UINT64_2PART_C(0xd5d238a4, abe98068), 109, 52}, | |||
{UINT64_2PART_C(0x9f4f2726, 179a2245), 136, 60}, | |||
{UINT64_2PART_C(0xed63a231, d4c4fb27), 162, 68}, | |||
{UINT64_2PART_C(0xb0de6538, 8cc8ada8), 189, 76}, | |||
{UINT64_2PART_C(0x83c7088e, 1aab65db), 216, 84}, | |||
{UINT64_2PART_C(0xc45d1df9, 42711d9a), 242, 92}, | |||
{UINT64_2PART_C(0x924d692c, a61be758), 269, 100}, | |||
{UINT64_2PART_C(0xda01ee64, 1a708dea), 295, 108}, | |||
{UINT64_2PART_C(0xa26da399, 9aef774a), 322, 116}, | |||
{UINT64_2PART_C(0xf209787b, b47d6b85), 348, 124}, | |||
{UINT64_2PART_C(0xb454e4a1, 79dd1877), 375, 132}, | |||
{UINT64_2PART_C(0x865b8692, 5b9bc5c2), 402, 140}, | |||
{UINT64_2PART_C(0xc83553c5, c8965d3d), 428, 148}, | |||
{UINT64_2PART_C(0x952ab45c, fa97a0b3), 455, 156}, | |||
{UINT64_2PART_C(0xde469fbd, 99a05fe3), 481, 164}, | |||
{UINT64_2PART_C(0xa59bc234, db398c25), 508, 172}, | |||
{UINT64_2PART_C(0xf6c69a72, a3989f5c), 534, 180}, | |||
{UINT64_2PART_C(0xb7dcbf53, 54e9bece), 561, 188}, | |||
{UINT64_2PART_C(0x88fcf317, f22241e2), 588, 196}, | |||
{UINT64_2PART_C(0xcc20ce9b, d35c78a5), 614, 204}, | |||
{UINT64_2PART_C(0x98165af3, 7b2153df), 641, 212}, | |||
{UINT64_2PART_C(0xe2a0b5dc, 971f303a), 667, 220}, | |||
{UINT64_2PART_C(0xa8d9d153, 5ce3b396), 694, 228}, | |||
{UINT64_2PART_C(0xfb9b7cd9, a4a7443c), 720, 236}, | |||
{UINT64_2PART_C(0xbb764c4c, a7a44410), 747, 244}, | |||
{UINT64_2PART_C(0x8bab8eef, b6409c1a), 774, 252}, | |||
{UINT64_2PART_C(0xd01fef10, a657842c), 800, 260}, | |||
{UINT64_2PART_C(0x9b10a4e5, e9913129), 827, 268}, | |||
{UINT64_2PART_C(0xe7109bfb, a19c0c9d), 853, 276}, | |||
{UINT64_2PART_C(0xac2820d9, 623bf429), 880, 284}, | |||
{UINT64_2PART_C(0x80444b5e, 7aa7cf85), 907, 292}, | |||
{UINT64_2PART_C(0xbf21e440, 03acdd2d), 933, 300}, | |||
{UINT64_2PART_C(0x8e679c2f, 5e44ff8f), 960, 308}, | |||
{UINT64_2PART_C(0xd433179d, 9c8cb841), 986, 316}, | |||
{UINT64_2PART_C(0x9e19db92, b4e31ba9), 1013, 324}, | |||
{UINT64_2PART_C(0xeb96bf6e, badf77d9), 1039, 332}, | |||
{UINT64_2PART_C(0xaf87023b, 9bf0ee6b), 1066, 340}, | |||
}; | |||
static const int kCachedPowersLength = ARRAY_SIZE(kCachedPowers); | |||
static const int kCachedPowersOffset = 348; // -1 * the first decimal_exponent. | |||
static const double kD_1_LOG2_10 = 0.30102999566398114; // 1 / lg(10) | |||
// Difference between the decimal exponents in the table above. | |||
const int PowersOfTenCache::kDecimalExponentDistance = 8; | |||
const int PowersOfTenCache::kMinDecimalExponent = -348; | |||
const int PowersOfTenCache::kMaxDecimalExponent = 340; | |||
void PowersOfTenCache::GetCachedPowerForBinaryExponentRange( | |||
int min_exponent, | |||
int max_exponent, | |||
DiyFp* power, | |||
int* decimal_exponent) { | |||
int kQ = DiyFp::kSignificandSize; | |||
double k = ceil((min_exponent + kQ - 1) * kD_1_LOG2_10); | |||
int foo = kCachedPowersOffset; | |||
int index = | |||
(foo + static_cast<int>(k) - 1) / kDecimalExponentDistance + 1; | |||
ASSERT(0 <= index && index < kCachedPowersLength); | |||
CachedPower cached_power = kCachedPowers[index]; | |||
ASSERT(min_exponent <= cached_power.binary_exponent); | |||
ASSERT(cached_power.binary_exponent <= max_exponent); | |||
*decimal_exponent = cached_power.decimal_exponent; | |||
*power = DiyFp(cached_power.significand, cached_power.binary_exponent); | |||
} | |||
void PowersOfTenCache::GetCachedPowerForDecimalExponent(int requested_exponent, | |||
DiyFp* power, | |||
int* found_exponent) { | |||
ASSERT(kMinDecimalExponent <= requested_exponent); | |||
ASSERT(requested_exponent < kMaxDecimalExponent + kDecimalExponentDistance); | |||
int index = | |||
(requested_exponent + kCachedPowersOffset) / kDecimalExponentDistance; | |||
CachedPower cached_power = kCachedPowers[index]; | |||
*power = DiyFp(cached_power.significand, cached_power.binary_exponent); | |||
*found_exponent = cached_power.decimal_exponent; | |||
ASSERT(*found_exponent <= requested_exponent); | |||
ASSERT(requested_exponent < *found_exponent + kDecimalExponentDistance); | |||
} | |||
} // namespace double_conversion |
@ -0,0 +1,64 @@ | |||
// Copyright 2010 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#ifndef DOUBLE_CONVERSION_CACHED_POWERS_H_ | |||
#define DOUBLE_CONVERSION_CACHED_POWERS_H_ | |||
#include "diy-fp.h" | |||
namespace double_conversion { | |||
class PowersOfTenCache { | |||
public: | |||
// Not all powers of ten are cached. The decimal exponent of two neighboring | |||
// cached numbers will differ by kDecimalExponentDistance. | |||
static const int kDecimalExponentDistance; | |||
static const int kMinDecimalExponent; | |||
static const int kMaxDecimalExponent; | |||
// Returns a cached power-of-ten with a binary exponent in the range | |||
// [min_exponent; max_exponent] (boundaries included). | |||
static void GetCachedPowerForBinaryExponentRange(int min_exponent, | |||
int max_exponent, | |||
DiyFp* power, | |||
int* decimal_exponent); | |||
// Returns a cached power of ten x ~= 10^k such that | |||
// k <= decimal_exponent < k + kCachedPowersDecimalDistance. | |||
// The given decimal_exponent must satisfy | |||
// kMinDecimalExponent <= requested_exponent, and | |||
// requested_exponent < kMaxDecimalExponent + kDecimalExponentDistance. | |||
static void GetCachedPowerForDecimalExponent(int requested_exponent, | |||
DiyFp* power, | |||
int* found_exponent); | |||
}; | |||
} // namespace double_conversion | |||
#endif // DOUBLE_CONVERSION_CACHED_POWERS_H_ |
@ -0,0 +1,57 @@ | |||
// Copyright 2010 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#include "diy-fp.h" | |||
#include "utils.h" | |||
namespace double_conversion { | |||
void DiyFp::Multiply(const DiyFp& other) { | |||
// Simply "emulates" a 128 bit multiplication. | |||
// However: the resulting number only contains 64 bits. The least | |||
// significant 64 bits are only used for rounding the most significant 64 | |||
// bits. | |||
const uint64_t kM32 = 0xFFFFFFFFU; | |||
uint64_t a = f_ >> 32; | |||
uint64_t b = f_ & kM32; | |||
uint64_t c = other.f_ >> 32; | |||
uint64_t d = other.f_ & kM32; | |||
uint64_t ac = a * c; | |||
uint64_t bc = b * c; | |||
uint64_t ad = a * d; | |||
uint64_t bd = b * d; | |||
uint64_t tmp = (bd >> 32) + (ad & kM32) + (bc & kM32); | |||
// By adding 1U << 31 to tmp we round the final result. | |||
// Halfway cases will be round up. | |||
tmp += 1U << 31; | |||
uint64_t result_f = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32); | |||
e_ += other.e_ + 64; | |||
f_ = result_f; | |||
} | |||
} // namespace double_conversion |
@ -0,0 +1,118 @@ | |||
// Copyright 2010 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#ifndef DOUBLE_CONVERSION_DIY_FP_H_ | |||
#define DOUBLE_CONVERSION_DIY_FP_H_ | |||
#include "utils.h" | |||
namespace double_conversion { | |||
// This "Do It Yourself Floating Point" class implements a floating-point number | |||
// with a uint64 significand and an int exponent. Normalized DiyFp numbers will | |||
// have the most significant bit of the significand set. | |||
// Multiplication and Subtraction do not normalize their results. | |||
// DiyFp are not designed to contain special doubles (NaN and Infinity). | |||
class DiyFp { | |||
public: | |||
static const int kSignificandSize = 64; | |||
DiyFp() : f_(0), e_(0) {} | |||
DiyFp(uint64_t f, int e) : f_(f), e_(e) {} | |||
// this = this - other. | |||
// The exponents of both numbers must be the same and the significand of this | |||
// must be bigger than the significand of other. | |||
// The result will not be normalized. | |||
void Subtract(const DiyFp& other) { | |||
ASSERT(e_ == other.e_); | |||
ASSERT(f_ >= other.f_); | |||
f_ -= other.f_; | |||
} | |||
// Returns a - b. | |||
// The exponents of both numbers must be the same and this must be bigger | |||
// than other. The result will not be normalized. | |||
static DiyFp Minus(const DiyFp& a, const DiyFp& b) { | |||
DiyFp result = a; | |||
result.Subtract(b); | |||
return result; | |||
} | |||
// this = this * other. | |||
void Multiply(const DiyFp& other); | |||
// returns a * b; | |||
static DiyFp Times(const DiyFp& a, const DiyFp& b) { | |||
DiyFp result = a; | |||
result.Multiply(b); | |||
return result; | |||
} | |||
void Normalize() { | |||
ASSERT(f_ != 0); | |||
uint64_t f = f_; | |||
int e = e_; | |||
// This method is mainly called for normalizing boundaries. In general | |||
// boundaries need to be shifted by 10 bits. We thus optimize for this case. | |||
const uint64_t k10MSBits = UINT64_2PART_C(0xFFC00000, 00000000); | |||
while ((f & k10MSBits) == 0) { | |||
f <<= 10; | |||
e -= 10; | |||
} | |||
while ((f & kUint64MSB) == 0) { | |||
f <<= 1; | |||
e--; | |||
} | |||
f_ = f; | |||
e_ = e; | |||
} | |||
static DiyFp Normalize(const DiyFp& a) { | |||
DiyFp result = a; | |||
result.Normalize(); | |||
return result; | |||
} | |||
uint64_t f() const { return f_; } | |||
int e() const { return e_; } | |||
void set_f(uint64_t new_value) { f_ = new_value; } | |||
void set_e(int new_value) { e_ = new_value; } | |||
private: | |||
static const uint64_t kUint64MSB = UINT64_2PART_C(0x80000000, 00000000); | |||
uint64_t f_; | |||
int e_; | |||
}; | |||
} // namespace double_conversion | |||
#endif // DOUBLE_CONVERSION_DIY_FP_H_ |
@ -0,0 +1,889 @@ | |||
// Copyright 2010 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#include <limits.h> | |||
#include <math.h> | |||
#include "double-conversion.h" | |||
#include "bignum-dtoa.h" | |||
#include "fast-dtoa.h" | |||
#include "fixed-dtoa.h" | |||
#include "ieee.h" | |||
#include "strtod.h" | |||
#include "utils.h" | |||
namespace double_conversion { | |||
const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() { | |||
int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN; | |||
static DoubleToStringConverter converter(flags, | |||
"Infinity", | |||
"NaN", | |||
'e', | |||
-6, 21, | |||
6, 0); | |||
return converter; | |||
} | |||
bool DoubleToStringConverter::HandleSpecialValues( | |||
double value, | |||
StringBuilder* result_builder) const { | |||
Double double_inspect(value); | |||
if (double_inspect.IsInfinite()) { | |||
if (infinity_symbol_ == NULL) return false; | |||
if (value < 0) { | |||
result_builder->AddCharacter('-'); | |||
} | |||
result_builder->AddString(infinity_symbol_); | |||
return true; | |||
} | |||
if (double_inspect.IsNan()) { | |||
if (nan_symbol_ == NULL) return false; | |||
result_builder->AddString(nan_symbol_); | |||
return true; | |||
} | |||
return false; | |||
} | |||
void DoubleToStringConverter::CreateExponentialRepresentation( | |||
const char* decimal_digits, | |||
int length, | |||
int exponent, | |||
StringBuilder* result_builder) const { | |||
ASSERT(length != 0); | |||
result_builder->AddCharacter(decimal_digits[0]); | |||
if (length != 1) { | |||
result_builder->AddCharacter('.'); | |||
result_builder->AddSubstring(&decimal_digits[1], length-1); | |||
} | |||
result_builder->AddCharacter(exponent_character_); | |||
if (exponent < 0) { | |||
result_builder->AddCharacter('-'); | |||
exponent = -exponent; | |||
} else { | |||
if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) { | |||
result_builder->AddCharacter('+'); | |||
} | |||
} | |||
if (exponent == 0) { | |||
result_builder->AddCharacter('0'); | |||
return; | |||
} | |||
ASSERT(exponent < 1e4); | |||
const int kMaxExponentLength = 5; | |||
char buffer[kMaxExponentLength + 1]; | |||
buffer[kMaxExponentLength] = '\0'; | |||
int first_char_pos = kMaxExponentLength; | |||
while (exponent > 0) { | |||
buffer[--first_char_pos] = '0' + (exponent % 10); | |||
exponent /= 10; | |||
} | |||
result_builder->AddSubstring(&buffer[first_char_pos], | |||
kMaxExponentLength - first_char_pos); | |||
} | |||
void DoubleToStringConverter::CreateDecimalRepresentation( | |||
const char* decimal_digits, | |||
int length, | |||
int decimal_point, | |||
int digits_after_point, | |||
StringBuilder* result_builder) const { | |||
// Create a representation that is padded with zeros if needed. | |||
if (decimal_point <= 0) { | |||
// "0.00000decimal_rep". | |||
result_builder->AddCharacter('0'); | |||
if (digits_after_point > 0) { | |||
result_builder->AddCharacter('.'); | |||
result_builder->AddPadding('0', -decimal_point); | |||
ASSERT(length <= digits_after_point - (-decimal_point)); | |||
result_builder->AddSubstring(decimal_digits, length); | |||
int remaining_digits = digits_after_point - (-decimal_point) - length; | |||
result_builder->AddPadding('0', remaining_digits); | |||
} | |||
} else if (decimal_point >= length) { | |||
// "decimal_rep0000.00000" or "decimal_rep.0000" | |||
result_builder->AddSubstring(decimal_digits, length); | |||
result_builder->AddPadding('0', decimal_point - length); | |||
if (digits_after_point > 0) { | |||
result_builder->AddCharacter('.'); | |||
result_builder->AddPadding('0', digits_after_point); | |||
} | |||
} else { | |||
// "decima.l_rep000" | |||
ASSERT(digits_after_point > 0); | |||
result_builder->AddSubstring(decimal_digits, decimal_point); | |||
result_builder->AddCharacter('.'); | |||
ASSERT(length - decimal_point <= digits_after_point); | |||
result_builder->AddSubstring(&decimal_digits[decimal_point], | |||
length - decimal_point); | |||
int remaining_digits = digits_after_point - (length - decimal_point); | |||
result_builder->AddPadding('0', remaining_digits); | |||
} | |||
if (digits_after_point == 0) { | |||
if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) { | |||
result_builder->AddCharacter('.'); | |||
} | |||
if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) { | |||
result_builder->AddCharacter('0'); | |||
} | |||
} | |||
} | |||
bool DoubleToStringConverter::ToShortestIeeeNumber( | |||
double value, | |||
StringBuilder* result_builder, | |||
DoubleToStringConverter::DtoaMode mode) const { | |||
ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE); | |||
if (Double(value).IsSpecial()) { | |||
return HandleSpecialValues(value, result_builder); | |||
} | |||
int decimal_point; | |||
bool sign; | |||
const int kDecimalRepCapacity = kBase10MaximalLength + 1; | |||
char decimal_rep[kDecimalRepCapacity]; | |||
int decimal_rep_length; | |||
DoubleToAscii(value, mode, 0, decimal_rep, kDecimalRepCapacity, | |||
&sign, &decimal_rep_length, &decimal_point); | |||
bool unique_zero = (flags_ & UNIQUE_ZERO) != 0; | |||
if (sign && (value != 0.0 || !unique_zero)) { | |||
result_builder->AddCharacter('-'); | |||
} | |||
int exponent = decimal_point - 1; | |||
if ((decimal_in_shortest_low_ <= exponent) && | |||
(exponent < decimal_in_shortest_high_)) { | |||
CreateDecimalRepresentation(decimal_rep, decimal_rep_length, | |||
decimal_point, | |||
Max(0, decimal_rep_length - decimal_point), | |||
result_builder); | |||
} else { | |||
CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent, | |||
result_builder); | |||
} | |||
return true; | |||
} | |||
bool DoubleToStringConverter::ToFixed(double value, | |||
int requested_digits, | |||
StringBuilder* result_builder) const { | |||
ASSERT(kMaxFixedDigitsBeforePoint == 60); | |||
const double kFirstNonFixed = 1e60; | |||
if (Double(value).IsSpecial()) { | |||
return HandleSpecialValues(value, result_builder); | |||
} | |||
if (requested_digits > kMaxFixedDigitsAfterPoint) return false; | |||
if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false; | |||
// Find a sufficiently precise decimal representation of n. | |||
int decimal_point; | |||
bool sign; | |||
// Add space for the '\0' byte. | |||
const int kDecimalRepCapacity = | |||
kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1; | |||
char decimal_rep[kDecimalRepCapacity]; | |||
int decimal_rep_length; | |||
DoubleToAscii(value, FIXED, requested_digits, | |||
decimal_rep, kDecimalRepCapacity, | |||
&sign, &decimal_rep_length, &decimal_point); | |||
bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); | |||
if (sign && (value != 0.0 || !unique_zero)) { | |||
result_builder->AddCharacter('-'); | |||
} | |||
CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, | |||
requested_digits, result_builder); | |||
return true; | |||
} | |||
bool DoubleToStringConverter::ToExponential( | |||
double value, | |||
int requested_digits, | |||
StringBuilder* result_builder) const { | |||
if (Double(value).IsSpecial()) { | |||
return HandleSpecialValues(value, result_builder); | |||
} | |||
if (requested_digits < -1) return false; | |||
if (requested_digits > kMaxExponentialDigits) return false; | |||
int decimal_point; | |||
bool sign; | |||
// Add space for digit before the decimal point and the '\0' character. | |||
const int kDecimalRepCapacity = kMaxExponentialDigits + 2; | |||
ASSERT(kDecimalRepCapacity > kBase10MaximalLength); | |||
char decimal_rep[kDecimalRepCapacity]; | |||
int decimal_rep_length; | |||
if (requested_digits == -1) { | |||
DoubleToAscii(value, SHORTEST, 0, | |||
decimal_rep, kDecimalRepCapacity, | |||
&sign, &decimal_rep_length, &decimal_point); | |||
} else { | |||
DoubleToAscii(value, PRECISION, requested_digits + 1, | |||
decimal_rep, kDecimalRepCapacity, | |||
&sign, &decimal_rep_length, &decimal_point); | |||
ASSERT(decimal_rep_length <= requested_digits + 1); | |||
for (int i = decimal_rep_length; i < requested_digits + 1; ++i) { | |||
decimal_rep[i] = '0'; | |||
} | |||
decimal_rep_length = requested_digits + 1; | |||
} | |||
bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); | |||
if (sign && (value != 0.0 || !unique_zero)) { | |||
result_builder->AddCharacter('-'); | |||
} | |||
int exponent = decimal_point - 1; | |||
CreateExponentialRepresentation(decimal_rep, | |||
decimal_rep_length, | |||
exponent, | |||
result_builder); | |||
return true; | |||
} | |||
bool DoubleToStringConverter::ToPrecision(double value, | |||
int precision, | |||
StringBuilder* result_builder) const { | |||
if (Double(value).IsSpecial()) { | |||
return HandleSpecialValues(value, result_builder); | |||
} | |||
if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) { | |||
return false; | |||
} | |||
// Find a sufficiently precise decimal representation of n. | |||
int decimal_point; | |||
bool sign; | |||
// Add one for the terminating null character. | |||
const int kDecimalRepCapacity = kMaxPrecisionDigits + 1; | |||
char decimal_rep[kDecimalRepCapacity]; | |||
int decimal_rep_length; | |||
DoubleToAscii(value, PRECISION, precision, | |||
decimal_rep, kDecimalRepCapacity, | |||
&sign, &decimal_rep_length, &decimal_point); | |||
ASSERT(decimal_rep_length <= precision); | |||
bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); | |||
if (sign && (value != 0.0 || !unique_zero)) { | |||
result_builder->AddCharacter('-'); | |||
} | |||
// The exponent if we print the number as x.xxeyyy. That is with the | |||
// decimal point after the first digit. | |||
int exponent = decimal_point - 1; | |||
int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0; | |||
if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) || | |||
(decimal_point - precision + extra_zero > | |||
max_trailing_padding_zeroes_in_precision_mode_)) { | |||
// Fill buffer to contain 'precision' digits. | |||
// Usually the buffer is already at the correct length, but 'DoubleToAscii' | |||
// is allowed to return less characters. | |||
for (int i = decimal_rep_length; i < precision; ++i) { | |||
decimal_rep[i] = '0'; | |||
} | |||
CreateExponentialRepresentation(decimal_rep, | |||
precision, | |||
exponent, | |||
result_builder); | |||
} else { | |||
CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, | |||
Max(0, precision - decimal_point), | |||
result_builder); | |||
} | |||
return true; | |||
} | |||
static BignumDtoaMode DtoaToBignumDtoaMode( | |||
DoubleToStringConverter::DtoaMode dtoa_mode) { | |||
switch (dtoa_mode) { | |||
case DoubleToStringConverter::SHORTEST: return BIGNUM_DTOA_SHORTEST; | |||
case DoubleToStringConverter::SHORTEST_SINGLE: | |||
return BIGNUM_DTOA_SHORTEST_SINGLE; | |||
case DoubleToStringConverter::FIXED: return BIGNUM_DTOA_FIXED; | |||
case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION; | |||
default: | |||
UNREACHABLE(); | |||
return BIGNUM_DTOA_SHORTEST; // To silence compiler. | |||
} | |||
} | |||
void DoubleToStringConverter::DoubleToAscii(double v, | |||
DtoaMode mode, | |||
int requested_digits, | |||
char* buffer, | |||
int buffer_length, | |||
bool* sign, | |||
int* length, | |||
int* point) { | |||
Vector<char> vector(buffer, buffer_length); | |||
ASSERT(!Double(v).IsSpecial()); | |||
ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE || requested_digits >= 0); | |||
if (Double(v).Sign() < 0) { | |||
*sign = true; | |||
v = -v; | |||
} else { | |||
*sign = false; | |||
} | |||
if (mode == PRECISION && requested_digits == 0) { | |||
vector[0] = '\0'; | |||
*length = 0; | |||
return; | |||
} | |||
if (v == 0) { | |||
vector[0] = '0'; | |||
vector[1] = '\0'; | |||
*length = 1; | |||
*point = 1; | |||
return; | |||
} | |||
bool fast_worked; | |||
switch (mode) { | |||
case SHORTEST: | |||
fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length, point); | |||
break; | |||
case SHORTEST_SINGLE: | |||
fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST_SINGLE, 0, | |||
vector, length, point); | |||
break; | |||
case FIXED: | |||
fast_worked = FastFixedDtoa(v, requested_digits, vector, length, point); | |||
break; | |||
case PRECISION: | |||
fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits, | |||
vector, length, point); | |||
break; | |||
default: | |||
UNREACHABLE(); | |||
fast_worked = false; | |||
} | |||
if (fast_worked) return; | |||
// If the fast dtoa didn't succeed use the slower bignum version. | |||
BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode); | |||
BignumDtoa(v, bignum_mode, requested_digits, vector, length, point); | |||
vector[*length] = '\0'; | |||
} | |||
// Consumes the given substring from the iterator. | |||
// Returns false, if the substring does not match. | |||
static bool ConsumeSubString(const char** current, | |||
const char* end, | |||
const char* substring) { | |||
ASSERT(**current == *substring); | |||
for (substring++; *substring != '\0'; substring++) { | |||
++*current; | |||
if (*current == end || **current != *substring) return false; | |||
} | |||
++*current; | |||
return true; | |||
} | |||
// Maximum number of significant digits in decimal representation. | |||
// The longest possible double in decimal representation is | |||
// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 | |||
// (768 digits). If we parse a number whose first digits are equal to a | |||
// mean of 2 adjacent doubles (that could have up to 769 digits) the result | |||
// must be rounded to the bigger one unless the tail consists of zeros, so | |||
// we don't need to preserve all the digits. | |||
const int kMaxSignificantDigits = 772; | |||
// Returns true if a nonspace found and false if the end has reached. | |||
static inline bool AdvanceToNonspace(const char** current, const char* end) { | |||
while (*current != end) { | |||
if (**current != ' ') return true; | |||
++*current; | |||
} | |||
return false; | |||
} | |||
static bool isDigit(int x, int radix) { | |||
return (x >= '0' && x <= '9' && x < '0' + radix) | |||
|| (radix > 10 && x >= 'a' && x < 'a' + radix - 10) | |||
|| (radix > 10 && x >= 'A' && x < 'A' + radix - 10); | |||
} | |||
static double SignedZero(bool sign) { | |||
return sign ? -0.0 : 0.0; | |||
} | |||
// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. | |||
template <int radix_log_2> | |||
static double RadixStringToIeee(const char* current, | |||
const char* end, | |||
bool sign, | |||
bool allow_trailing_junk, | |||
double junk_string_value, | |||
bool read_as_double, | |||
const char** trailing_pointer) { | |||
ASSERT(current != end); | |||
const int kDoubleSize = Double::kSignificandSize; | |||
const int kSingleSize = Single::kSignificandSize; | |||
const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize; | |||
// Skip leading 0s. | |||
while (*current == '0') { | |||
++current; | |||
if (current == end) { | |||
*trailing_pointer = end; | |||
return SignedZero(sign); | |||
} | |||
} | |||
int64_t number = 0; | |||
int exponent = 0; | |||
const int radix = (1 << radix_log_2); | |||
do { | |||
int digit; | |||
if (*current >= '0' && *current <= '9' && *current < '0' + radix) { | |||
digit = static_cast<char>(*current) - '0'; | |||
} else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) { | |||
digit = static_cast<char>(*current) - 'a' + 10; | |||
} else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) { | |||
digit = static_cast<char>(*current) - 'A' + 10; | |||
} else { | |||
if (allow_trailing_junk || !AdvanceToNonspace(¤t, end)) { | |||
break; | |||
} else { | |||
return junk_string_value; | |||
} | |||
} | |||
number = number * radix + digit; | |||
int overflow = static_cast<int>(number >> kSignificandSize); | |||
if (overflow != 0) { | |||
// Overflow occurred. Need to determine which direction to round the | |||
// result. | |||
int overflow_bits_count = 1; | |||
while (overflow > 1) { | |||
overflow_bits_count++; | |||
overflow >>= 1; | |||
} | |||
int dropped_bits_mask = ((1 << overflow_bits_count) - 1); | |||
int dropped_bits = static_cast<int>(number) & dropped_bits_mask; | |||
number >>= overflow_bits_count; | |||
exponent = overflow_bits_count; | |||
bool zero_tail = true; | |||
while (true) { | |||
++current; | |||
if (current == end || !isDigit(*current, radix)) break; | |||
zero_tail = zero_tail && *current == '0'; | |||
exponent += radix_log_2; | |||
} | |||
if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { | |||
return junk_string_value; | |||
} | |||
int middle_value = (1 << (overflow_bits_count - 1)); | |||
if (dropped_bits > middle_value) { | |||
number++; // Rounding up. | |||
} else if (dropped_bits == middle_value) { | |||
// Rounding to even to consistency with decimals: half-way case rounds | |||
// up if significant part is odd and down otherwise. | |||
if ((number & 1) != 0 || !zero_tail) { | |||
number++; // Rounding up. | |||
} | |||
} | |||
// Rounding up may cause overflow. | |||
if ((number & ((int64_t)1 << kSignificandSize)) != 0) { | |||
exponent++; | |||
number >>= 1; | |||
} | |||
break; | |||
} | |||
++current; | |||
} while (current != end); | |||
ASSERT(number < ((int64_t)1 << kSignificandSize)); | |||
ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number); | |||
*trailing_pointer = current; | |||
if (exponent == 0) { | |||
if (sign) { | |||
if (number == 0) return -0.0; | |||
number = -number; | |||
} | |||
return static_cast<double>(number); | |||
} | |||
ASSERT(number != 0); | |||
return Double(DiyFp(number, exponent)).value(); | |||
} | |||
double StringToDoubleConverter::StringToIeee( | |||
const char* input, | |||
int length, | |||
int* processed_characters_count, | |||
bool read_as_double) { | |||
const char* current = input; | |||
const char* end = input + length; | |||
*processed_characters_count = 0; | |||
const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0; | |||
const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0; | |||
const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0; | |||
const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0; | |||
// To make sure that iterator dereferencing is valid the following | |||
// convention is used: | |||
// 1. Each '++current' statement is followed by check for equality to 'end'. | |||
// 2. If AdvanceToNonspace returned false then current == end. | |||
// 3. If 'current' becomes equal to 'end' the function returns or goes to | |||
// 'parsing_done'. | |||
// 4. 'current' is not dereferenced after the 'parsing_done' label. | |||
// 5. Code before 'parsing_done' may rely on 'current != end'. | |||
if (current == end) return empty_string_value_; | |||
if (allow_leading_spaces || allow_trailing_spaces) { | |||
if (!AdvanceToNonspace(¤t, end)) { | |||
*processed_characters_count = current - input; | |||
return empty_string_value_; | |||
} | |||
if (!allow_leading_spaces && (input != current)) { | |||
// No leading spaces allowed, but AdvanceToNonspace moved forward. | |||
return junk_string_value_; | |||
} | |||
} | |||
// The longest form of simplified number is: "-<significant digits>.1eXXX\0". | |||
const int kBufferSize = kMaxSignificantDigits + 10; | |||
char buffer[kBufferSize]; // NOLINT: size is known at compile time. | |||
int buffer_pos = 0; | |||
// Exponent will be adjusted if insignificant digits of the integer part | |||
// or insignificant leading zeros of the fractional part are dropped. | |||
int exponent = 0; | |||
int significant_digits = 0; | |||
int insignificant_digits = 0; | |||
bool nonzero_digit_dropped = false; | |||
bool sign = false; | |||
if (*current == '+' || *current == '-') { | |||
sign = (*current == '-'); | |||
++current; | |||
const char* next_non_space = current; | |||
// Skip following spaces (if allowed). | |||
if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_; | |||
if (!allow_spaces_after_sign && (current != next_non_space)) { | |||
return junk_string_value_; | |||
} | |||
current = next_non_space; | |||
} | |||
if (infinity_symbol_ != NULL) { | |||
if (*current == infinity_symbol_[0]) { | |||
if (!ConsumeSubString(¤t, end, infinity_symbol_)) { | |||
return junk_string_value_; | |||
} | |||
if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { | |||
return junk_string_value_; | |||
} | |||
if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { | |||
return junk_string_value_; | |||
} | |||
ASSERT(buffer_pos == 0); | |||
*processed_characters_count = current - input; | |||
return sign ? -Double::Infinity() : Double::Infinity(); | |||
} | |||
} | |||
if (nan_symbol_ != NULL) { | |||
if (*current == nan_symbol_[0]) { | |||
if (!ConsumeSubString(¤t, end, nan_symbol_)) { | |||
return junk_string_value_; | |||
} | |||
if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { | |||
return junk_string_value_; | |||
} | |||
if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { | |||
return junk_string_value_; | |||
} | |||
ASSERT(buffer_pos == 0); | |||
*processed_characters_count = current - input; | |||
return sign ? -Double::NaN() : Double::NaN(); | |||
} | |||
} | |||
bool leading_zero = false; | |||
if (*current == '0') { | |||
++current; | |||
if (current == end) { | |||
*processed_characters_count = current - input; | |||
return SignedZero(sign); | |||
} | |||
leading_zero = true; | |||
// It could be hexadecimal value. | |||
if ((flags_ & ALLOW_HEX) && (*current == 'x' || *current == 'X')) { | |||
++current; | |||
if (current == end || !isDigit(*current, 16)) { | |||
return junk_string_value_; // "0x". | |||
} | |||
const char* tail_pointer = NULL; | |||
double result = RadixStringToIeee<4>(current, | |||
end, | |||
sign, | |||
allow_trailing_junk, | |||
junk_string_value_, | |||
read_as_double, | |||
&tail_pointer); | |||
if (tail_pointer != NULL) { | |||
if (allow_trailing_spaces) AdvanceToNonspace(&tail_pointer, end); | |||
*processed_characters_count = tail_pointer - input; | |||
} | |||
return result; | |||
} | |||
// Ignore leading zeros in the integer part. | |||
while (*current == '0') { | |||
++current; | |||
if (current == end) { | |||
*processed_characters_count = current - input; | |||
return SignedZero(sign); | |||
} | |||
} | |||
} | |||
bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0; | |||
// Copy significant digits of the integer part (if any) to the buffer. | |||
while (*current >= '0' && *current <= '9') { | |||
if (significant_digits < kMaxSignificantDigits) { | |||
ASSERT(buffer_pos < kBufferSize); | |||
buffer[buffer_pos++] = static_cast<char>(*current); | |||
significant_digits++; | |||
// Will later check if it's an octal in the buffer. | |||
} else { | |||
insignificant_digits++; // Move the digit into the exponential part. | |||
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; | |||
} | |||
octal = octal && *current < '8'; | |||
++current; | |||
if (current == end) goto parsing_done; | |||
} | |||
if (significant_digits == 0) { | |||
octal = false; | |||
} | |||
if (*current == '.') { | |||
if (octal && !allow_trailing_junk) return junk_string_value_; | |||
if (octal) goto parsing_done; | |||
++current; | |||
if (current == end) { | |||
if (significant_digits == 0 && !leading_zero) { | |||
return junk_string_value_; | |||
} else { | |||
goto parsing_done; | |||
} | |||
} | |||
if (significant_digits == 0) { | |||
// octal = false; | |||
// Integer part consists of 0 or is absent. Significant digits start after | |||
// leading zeros (if any). | |||
while (*current == '0') { | |||
++current; | |||
if (current == end) { | |||
*processed_characters_count = current - input; | |||
return SignedZero(sign); | |||
} | |||
exponent--; // Move this 0 into the exponent. | |||
} | |||
} | |||
// There is a fractional part. | |||
// We don't emit a '.', but adjust the exponent instead. | |||
while (*current >= '0' && *current <= '9') { | |||
if (significant_digits < kMaxSignificantDigits) { | |||
ASSERT(buffer_pos < kBufferSize); | |||
buffer[buffer_pos++] = static_cast<char>(*current); | |||
significant_digits++; | |||
exponent--; | |||
} else { | |||
// Ignore insignificant digits in the fractional part. | |||
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; | |||
} | |||
++current; | |||
if (current == end) goto parsing_done; | |||
} | |||
} | |||
if (!leading_zero && exponent == 0 && significant_digits == 0) { | |||
// If leading_zeros is true then the string contains zeros. | |||
// If exponent < 0 then string was [+-]\.0*... | |||
// If significant_digits != 0 the string is not equal to 0. | |||
// Otherwise there are no digits in the string. | |||
return junk_string_value_; | |||
} | |||
// Parse exponential part. | |||
if (*current == 'e' || *current == 'E') { | |||
if (octal && !allow_trailing_junk) return junk_string_value_; | |||
if (octal) goto parsing_done; | |||
++current; | |||
if (current == end) { | |||
if (allow_trailing_junk) { | |||
goto parsing_done; | |||
} else { | |||
return junk_string_value_; | |||
} | |||
} | |||
char sign = '+'; | |||
if (*current == '+' || *current == '-') { | |||
sign = static_cast<char>(*current); | |||
++current; | |||
if (current == end) { | |||
if (allow_trailing_junk) { | |||
goto parsing_done; | |||
} else { | |||
return junk_string_value_; | |||
} | |||
} | |||
} | |||
if (current == end || *current < '0' || *current > '9') { | |||
if (allow_trailing_junk) { | |||
goto parsing_done; | |||
} else { | |||
return junk_string_value_; | |||
} | |||
} | |||
const int max_exponent = INT_MAX / 2; | |||
ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); | |||
int num = 0; | |||
do { | |||
// Check overflow. | |||
int digit = *current - '0'; | |||
if (num >= max_exponent / 10 | |||
&& !(num == max_exponent / 10 && digit <= max_exponent % 10)) { | |||
num = max_exponent; | |||
} else { | |||
num = num * 10 + digit; | |||
} | |||
++current; | |||
} while (current != end && *current >= '0' && *current <= '9'); | |||
exponent += (sign == '-' ? -num : num); | |||
} | |||
if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { | |||
return junk_string_value_; | |||
} | |||
if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { | |||
return junk_string_value_; | |||
} | |||
if (allow_trailing_spaces) { | |||
AdvanceToNonspace(¤t, end); | |||
} | |||
parsing_done: | |||
exponent += insignificant_digits; | |||
if (octal) { | |||
double result; | |||
const char* tail_pointer = NULL; | |||
result = RadixStringToIeee<3>(buffer, | |||
buffer + buffer_pos, | |||
sign, | |||
allow_trailing_junk, | |||
junk_string_value_, | |||
read_as_double, | |||
&tail_pointer); | |||
ASSERT(tail_pointer != NULL); | |||
*processed_characters_count = current - input; | |||
return result; | |||
} | |||
if (nonzero_digit_dropped) { | |||
buffer[buffer_pos++] = '1'; | |||
exponent--; | |||
} | |||
ASSERT(buffer_pos < kBufferSize); | |||
buffer[buffer_pos] = '\0'; | |||
double converted; | |||
if (read_as_double) { | |||
converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); | |||
} else { | |||
converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent); | |||
} | |||
*processed_characters_count = current - input; | |||
return sign? -converted: converted; | |||
} | |||
} // namespace double_conversion |
@ -0,0 +1,536 @@ | |||
// Copyright 2012 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ | |||
#define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ | |||
#include "utils.h" | |||
namespace double_conversion { | |||
class DoubleToStringConverter { | |||
public: | |||
// When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint | |||
// or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the | |||
// function returns false. | |||
static const int kMaxFixedDigitsBeforePoint = 60; | |||
static const int kMaxFixedDigitsAfterPoint = 60; | |||
// When calling ToExponential with a requested_digits | |||
// parameter > kMaxExponentialDigits then the function returns false. | |||
static const int kMaxExponentialDigits = 120; | |||
// When calling ToPrecision with a requested_digits | |||
// parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits | |||
// then the function returns false. | |||
static const int kMinPrecisionDigits = 1; | |||
static const int kMaxPrecisionDigits = 120; | |||
enum Flags { | |||
NO_FLAGS = 0, | |||
EMIT_POSITIVE_EXPONENT_SIGN = 1, | |||
EMIT_TRAILING_DECIMAL_POINT = 2, | |||
EMIT_TRAILING_ZERO_AFTER_POINT = 4, | |||
UNIQUE_ZERO = 8 | |||
}; | |||
// Flags should be a bit-or combination of the possible Flags-enum. | |||
// - NO_FLAGS: no special flags. | |||
// - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent | |||
// form, emits a '+' for positive exponents. Example: 1.2e+2. | |||
// - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is | |||
// converted into decimal format then a trailing decimal point is appended. | |||
// Example: 2345.0 is converted to "2345.". | |||
// - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point | |||
// emits a trailing '0'-character. This flag requires the | |||
// EXMIT_TRAILING_DECIMAL_POINT flag. | |||
// Example: 2345.0 is converted to "2345.0". | |||
// - UNIQUE_ZERO: "-0.0" is converted to "0.0". | |||
// | |||
// Infinity symbol and nan_symbol provide the string representation for these | |||
// special values. If the string is NULL and the special value is encountered | |||
// then the conversion functions return false. | |||
// | |||
// The exponent_character is used in exponential representations. It is | |||
// usually 'e' or 'E'. | |||
// | |||
// When converting to the shortest representation the converter will | |||
// represent input numbers in decimal format if they are in the interval | |||
// [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[ | |||
// (lower boundary included, greater boundary excluded). | |||
// Example: with decimal_in_shortest_low = -6 and | |||
// decimal_in_shortest_high = 21: | |||
// ToShortest(0.000001) -> "0.000001" | |||
// ToShortest(0.0000001) -> "1e-7" | |||
// ToShortest(111111111111111111111.0) -> "111111111111111110000" | |||
// ToShortest(100000000000000000000.0) -> "100000000000000000000" | |||
// ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" | |||
// | |||
// When converting to precision mode the converter may add | |||
// max_leading_padding_zeroes before returning the number in exponential | |||
// format. | |||
// Example with max_leading_padding_zeroes_in_precision_mode = 6. | |||
// ToPrecision(0.0000012345, 2) -> "0.0000012" | |||
// ToPrecision(0.00000012345, 2) -> "1.2e-7" | |||
// Similarily the converter may add up to | |||
// max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid | |||
// returning an exponential representation. A zero added by the | |||
// EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. | |||
// Examples for max_trailing_padding_zeroes_in_precision_mode = 1: | |||
// ToPrecision(230.0, 2) -> "230" | |||
// ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. | |||
// ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. | |||
DoubleToStringConverter(int flags, | |||
const char* infinity_symbol, | |||
const char* nan_symbol, | |||
char exponent_character, | |||
int decimal_in_shortest_low, | |||
int decimal_in_shortest_high, | |||
int max_leading_padding_zeroes_in_precision_mode, | |||
int max_trailing_padding_zeroes_in_precision_mode) | |||
: flags_(flags), | |||
infinity_symbol_(infinity_symbol), | |||
nan_symbol_(nan_symbol), | |||
exponent_character_(exponent_character), | |||
decimal_in_shortest_low_(decimal_in_shortest_low), | |||
decimal_in_shortest_high_(decimal_in_shortest_high), | |||
max_leading_padding_zeroes_in_precision_mode_( | |||
max_leading_padding_zeroes_in_precision_mode), | |||
max_trailing_padding_zeroes_in_precision_mode_( | |||
max_trailing_padding_zeroes_in_precision_mode) { | |||
// When 'trailing zero after the point' is set, then 'trailing point' | |||
// must be set too. | |||
ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) || | |||
!((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0)); | |||
} | |||
// Returns a converter following the EcmaScript specification. | |||
static const DoubleToStringConverter& EcmaScriptConverter(); | |||
// Computes the shortest string of digits that correctly represent the input | |||
// number. Depending on decimal_in_shortest_low and decimal_in_shortest_high | |||
// (see constructor) it then either returns a decimal representation, or an | |||
// exponential representation. | |||
// Example with decimal_in_shortest_low = -6, | |||
// decimal_in_shortest_high = 21, | |||
// EMIT_POSITIVE_EXPONENT_SIGN activated, and | |||
// EMIT_TRAILING_DECIMAL_POINT deactived: | |||
// ToShortest(0.000001) -> "0.000001" | |||
// ToShortest(0.0000001) -> "1e-7" | |||
// ToShortest(111111111111111111111.0) -> "111111111111111110000" | |||
// ToShortest(100000000000000000000.0) -> "100000000000000000000" | |||
// ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" | |||
// | |||
// Note: the conversion may round the output if the returned string | |||
// is accurate enough to uniquely identify the input-number. | |||
// For example the most precise representation of the double 9e59 equals | |||
// "899999999999999918767229449717619953810131273674690656206848", but | |||
// the converter will return the shorter (but still correct) "9e59". | |||
// | |||
// Returns true if the conversion succeeds. The conversion always succeeds | |||
// except when the input value is special and no infinity_symbol or | |||
// nan_symbol has been given to the constructor. | |||
bool ToShortest(double value, StringBuilder* result_builder) const { | |||
return ToShortestIeeeNumber(value, result_builder, SHORTEST); | |||
} | |||
// Same as ToShortest, but for single-precision floats. | |||
bool ToShortestSingle(float value, StringBuilder* result_builder) const { | |||
return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE); | |||
} | |||
// Computes a decimal representation with a fixed number of digits after the | |||
// decimal point. The last emitted digit is rounded. | |||
// | |||
// Examples: | |||
// ToFixed(3.12, 1) -> "3.1" | |||
// ToFixed(3.1415, 3) -> "3.142" | |||
// ToFixed(1234.56789, 4) -> "1234.5679" | |||
// ToFixed(1.23, 5) -> "1.23000" | |||
// ToFixed(0.1, 4) -> "0.1000" | |||
// ToFixed(1e30, 2) -> "1000000000000000019884624838656.00" | |||
// ToFixed(0.1, 30) -> "0.100000000000000005551115123126" | |||
// ToFixed(0.1, 17) -> "0.10000000000000001" | |||
// | |||
// If requested_digits equals 0, then the tail of the result depends on | |||
// the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT. | |||
// Examples, for requested_digits == 0, | |||
// let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be | |||
// - false and false: then 123.45 -> 123 | |||
// 0.678 -> 1 | |||
// - true and false: then 123.45 -> 123. | |||
// 0.678 -> 1. | |||
// - true and true: then 123.45 -> 123.0 | |||
// 0.678 -> 1.0 | |||
// | |||
// Returns true if the conversion succeeds. The conversion always succeeds | |||
// except for the following cases: | |||
// - the input value is special and no infinity_symbol or nan_symbol has | |||
// been provided to the constructor, | |||
// - 'value' > 10^kMaxFixedDigitsBeforePoint, or | |||
// - 'requested_digits' > kMaxFixedDigitsAfterPoint. | |||
// The last two conditions imply that the result will never contain more than | |||
// 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters | |||
// (one additional character for the sign, and one for the decimal point). | |||
bool ToFixed(double value, | |||
int requested_digits, | |||
StringBuilder* result_builder) const; | |||
// Computes a representation in exponential format with requested_digits | |||
// after the decimal point. The last emitted digit is rounded. | |||
// If requested_digits equals -1, then the shortest exponential representation | |||
// is computed. | |||
// | |||
// Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and | |||
// exponent_character set to 'e'. | |||
// ToExponential(3.12, 1) -> "3.1e0" | |||
// ToExponential(5.0, 3) -> "5.000e0" | |||
// ToExponential(0.001, 2) -> "1.00e-3" | |||
// ToExponential(3.1415, -1) -> "3.1415e0" | |||
// ToExponential(3.1415, 4) -> "3.1415e0" | |||
// ToExponential(3.1415, 3) -> "3.142e0" | |||
// ToExponential(123456789000000, 3) -> "1.235e14" | |||
// ToExponential(1000000000000000019884624838656.0, -1) -> "1e30" | |||
// ToExponential(1000000000000000019884624838656.0, 32) -> | |||
// "1.00000000000000001988462483865600e30" | |||
// ToExponential(1234, 0) -> "1e3" | |||
// | |||
// Returns true if the conversion succeeds. The conversion always succeeds | |||
// except for the following cases: | |||
// - the input value is special and no infinity_symbol or nan_symbol has | |||
// been provided to the constructor, | |||
// - 'requested_digits' > kMaxExponentialDigits. | |||
// The last condition implies that the result will never contain more than | |||
// kMaxExponentialDigits + 8 characters (the sign, the digit before the | |||
// decimal point, the decimal point, the exponent character, the | |||
// exponent's sign, and at most 3 exponent digits). | |||
bool ToExponential(double value, | |||
int requested_digits, | |||
StringBuilder* result_builder) const; | |||
// Computes 'precision' leading digits of the given 'value' and returns them | |||
// either in exponential or decimal format, depending on | |||
// max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the | |||
// constructor). | |||
// The last computed digit is rounded. | |||
// | |||
// Example with max_leading_padding_zeroes_in_precision_mode = 6. | |||
// ToPrecision(0.0000012345, 2) -> "0.0000012" | |||
// ToPrecision(0.00000012345, 2) -> "1.2e-7" | |||
// Similarily the converter may add up to | |||
// max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid | |||
// returning an exponential representation. A zero added by the | |||
// EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. | |||
// Examples for max_trailing_padding_zeroes_in_precision_mode = 1: | |||
// ToPrecision(230.0, 2) -> "230" | |||
// ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. | |||
// ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. | |||
// Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no | |||
// EMIT_TRAILING_ZERO_AFTER_POINT: | |||
// ToPrecision(123450.0, 6) -> "123450" | |||
// ToPrecision(123450.0, 5) -> "123450" | |||
// ToPrecision(123450.0, 4) -> "123500" | |||
// ToPrecision(123450.0, 3) -> "123000" | |||
// ToPrecision(123450.0, 2) -> "1.2e5" | |||
// | |||
// Returns true if the conversion succeeds. The conversion always succeeds | |||
// except for the following cases: | |||
// - the input value is special and no infinity_symbol or nan_symbol has | |||
// been provided to the constructor, | |||
// - precision < kMinPericisionDigits | |||
// - precision > kMaxPrecisionDigits | |||
// The last condition implies that the result will never contain more than | |||
// kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the | |||
// exponent character, the exponent's sign, and at most 3 exponent digits). | |||
bool ToPrecision(double value, | |||
int precision, | |||
StringBuilder* result_builder) const; | |||
enum DtoaMode { | |||
// Produce the shortest correct representation. | |||
// For example the output of 0.299999999999999988897 is (the less accurate | |||
// but correct) 0.3. | |||
SHORTEST, | |||
// Same as SHORTEST, but for single-precision floats. | |||
SHORTEST_SINGLE, | |||
// Produce a fixed number of digits after the decimal point. | |||
// For instance fixed(0.1, 4) becomes 0.1000 | |||
// If the input number is big, the output will be big. | |||
FIXED, | |||
// Fixed number of digits (independent of the decimal point). | |||
PRECISION | |||
}; | |||
// The maximal number of digits that are needed to emit a double in base 10. | |||
// A higher precision can be achieved by using more digits, but the shortest | |||
// accurate representation of any double will never use more digits than | |||
// kBase10MaximalLength. | |||
// Note that DoubleToAscii null-terminates its input. So the given buffer | |||
// should be at least kBase10MaximalLength + 1 characters long. | |||
static const int kBase10MaximalLength = 17; | |||
// Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or | |||
// -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v' | |||
// after it has been casted to a single-precision float. That is, in this | |||
// mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity. | |||
// | |||
// The result should be interpreted as buffer * 10^(point-length). | |||
// | |||
// The output depends on the given mode: | |||
// - SHORTEST: produce the least amount of digits for which the internal | |||
// identity requirement is still satisfied. If the digits are printed | |||
// (together with the correct exponent) then reading this number will give | |||
// 'v' again. The buffer will choose the representation that is closest to | |||
// 'v'. If there are two at the same distance, than the one farther away | |||
// from 0 is chosen (halfway cases - ending with 5 - are rounded up). | |||
// In this mode the 'requested_digits' parameter is ignored. | |||
// - SHORTEST_SINGLE: same as SHORTEST but with single-precision. | |||
// - FIXED: produces digits necessary to print a given number with | |||
// 'requested_digits' digits after the decimal point. The produced digits | |||
// might be too short in which case the caller has to fill the remainder | |||
// with '0's. | |||
// Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2. | |||
// Halfway cases are rounded towards +/-Infinity (away from 0). The call | |||
// toFixed(0.15, 2) thus returns buffer="2", point=0. | |||
// The returned buffer may contain digits that would be truncated from the | |||
// shortest representation of the input. | |||
// - PRECISION: produces 'requested_digits' where the first digit is not '0'. | |||
// Even though the length of produced digits usually equals | |||
// 'requested_digits', the function is allowed to return fewer digits, in | |||
// which case the caller has to fill the missing digits with '0's. | |||
// Halfway cases are again rounded away from 0. | |||
// DoubleToAscii expects the given buffer to be big enough to hold all | |||
// digits and a terminating null-character. In SHORTEST-mode it expects a | |||
// buffer of at least kBase10MaximalLength + 1. In all other modes the | |||
// requested_digits parameter and the padding-zeroes limit the size of the | |||
// output. Don't forget the decimal point, the exponent character and the | |||
// terminating null-character when computing the maximal output size. | |||
// The given length is only used in debug mode to ensure the buffer is big | |||
// enough. | |||
static void DoubleToAscii(double v, | |||
DtoaMode mode, | |||
int requested_digits, | |||
char* buffer, | |||
int buffer_length, | |||
bool* sign, | |||
int* length, | |||
int* point); | |||
private: | |||
// Implementation for ToShortest and ToShortestSingle. | |||
bool ToShortestIeeeNumber(double value, | |||
StringBuilder* result_builder, | |||
DtoaMode mode) const; | |||
// If the value is a special value (NaN or Infinity) constructs the | |||
// corresponding string using the configured infinity/nan-symbol. | |||
// If either of them is NULL or the value is not special then the | |||
// function returns false. | |||
bool HandleSpecialValues(double value, StringBuilder* result_builder) const; | |||
// Constructs an exponential representation (i.e. 1.234e56). | |||
// The given exponent assumes a decimal point after the first decimal digit. | |||
void CreateExponentialRepresentation(const char* decimal_digits, | |||
int length, | |||
int exponent, | |||
StringBuilder* result_builder) const; | |||
// Creates a decimal representation (i.e 1234.5678). | |||
void CreateDecimalRepresentation(const char* decimal_digits, | |||
int length, | |||
int decimal_point, | |||
int digits_after_point, | |||
StringBuilder* result_builder) const; | |||
const int flags_; | |||
const char* const infinity_symbol_; | |||
const char* const nan_symbol_; | |||
const char exponent_character_; | |||
const int decimal_in_shortest_low_; | |||
const int decimal_in_shortest_high_; | |||
const int max_leading_padding_zeroes_in_precision_mode_; | |||
const int max_trailing_padding_zeroes_in_precision_mode_; | |||
DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter); | |||
}; | |||
class StringToDoubleConverter { | |||
public: | |||
// Enumeration for allowing octals and ignoring junk when converting | |||
// strings to numbers. | |||
enum Flags { | |||
NO_FLAGS = 0, | |||
ALLOW_HEX = 1, | |||
ALLOW_OCTALS = 2, | |||
ALLOW_TRAILING_JUNK = 4, | |||
ALLOW_LEADING_SPACES = 8, | |||
ALLOW_TRAILING_SPACES = 16, | |||
ALLOW_SPACES_AFTER_SIGN = 32 | |||
}; | |||
// Flags should be a bit-or combination of the possible Flags-enum. | |||
// - NO_FLAGS: no special flags. | |||
// - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers. | |||
// Ex: StringToDouble("0x1234") -> 4660.0 | |||
// In StringToDouble("0x1234.56") the characters ".56" are trailing | |||
// junk. The result of the call is hence dependent on | |||
// the ALLOW_TRAILING_JUNK flag and/or the junk value. | |||
// With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK, | |||
// the string will not be parsed as "0" followed by junk. | |||
// | |||
// - ALLOW_OCTALS: recognizes the prefix "0" for octals: | |||
// If a sequence of octal digits starts with '0', then the number is | |||
// read as octal integer. Octal numbers may only be integers. | |||
// Ex: StringToDouble("01234") -> 668.0 | |||
// StringToDouble("012349") -> 12349.0 // Not a sequence of octal | |||
// // digits. | |||
// In StringToDouble("01234.56") the characters ".56" are trailing | |||
// junk. The result of the call is hence dependent on | |||
// the ALLOW_TRAILING_JUNK flag and/or the junk value. | |||
// In StringToDouble("01234e56") the characters "e56" are trailing | |||
// junk, too. | |||
// - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of | |||
// a double literal. | |||
// - ALLOW_LEADING_SPACES: skip over leading spaces. | |||
// - ALLOW_TRAILING_SPACES: ignore trailing spaces. | |||
// - ALLOW_SPACES_AFTER_SIGN: ignore spaces after the sign. | |||
// Ex: StringToDouble("- 123.2") -> -123.2. | |||
// StringToDouble("+ 123.2") -> 123.2 | |||
// | |||
// empty_string_value is returned when an empty string is given as input. | |||
// If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string | |||
// containing only spaces is converted to the 'empty_string_value', too. | |||
// | |||
// junk_string_value is returned when | |||
// a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not | |||
// part of a double-literal) is found. | |||
// b) ALLOW_TRAILING_JUNK is set, but the string does not start with a | |||
// double literal. | |||
// | |||
// infinity_symbol and nan_symbol are strings that are used to detect | |||
// inputs that represent infinity and NaN. They can be null, in which case | |||
// they are ignored. | |||
// The conversion routine first reads any possible signs. Then it compares the | |||
// following character of the input-string with the first character of | |||
// the infinity, and nan-symbol. If either matches, the function assumes, that | |||
// a match has been found, and expects the following input characters to match | |||
// the remaining characters of the special-value symbol. | |||
// This means that the following restrictions apply to special-value symbols: | |||
// - they must not start with signs ('+', or '-'), | |||
// - they must not have the same first character. | |||
// - they must not start with digits. | |||
// | |||
// Examples: | |||
// flags = ALLOW_HEX | ALLOW_TRAILING_JUNK, | |||
// empty_string_value = 0.0, | |||
// junk_string_value = NaN, | |||
// infinity_symbol = "infinity", | |||
// nan_symbol = "nan": | |||
// StringToDouble("0x1234") -> 4660.0. | |||
// StringToDouble("0x1234K") -> 4660.0. | |||
// StringToDouble("") -> 0.0 // empty_string_value. | |||
// StringToDouble(" ") -> NaN // junk_string_value. | |||
// StringToDouble(" 1") -> NaN // junk_string_value. | |||
// StringToDouble("0x") -> NaN // junk_string_value. | |||
// StringToDouble("-123.45") -> -123.45. | |||
// StringToDouble("--123.45") -> NaN // junk_string_value. | |||
// StringToDouble("123e45") -> 123e45. | |||
// StringToDouble("123E45") -> 123e45. | |||
// StringToDouble("123e+45") -> 123e45. | |||
// StringToDouble("123E-45") -> 123e-45. | |||
// StringToDouble("123e") -> 123.0 // trailing junk ignored. | |||
// StringToDouble("123e-") -> 123.0 // trailing junk ignored. | |||
// StringToDouble("+NaN") -> NaN // NaN string literal. | |||
// StringToDouble("-infinity") -> -inf. // infinity literal. | |||
// StringToDouble("Infinity") -> NaN // junk_string_value. | |||
// | |||
// flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES, | |||
// empty_string_value = 0.0, | |||
// junk_string_value = NaN, | |||
// infinity_symbol = NULL, | |||
// nan_symbol = NULL: | |||
// StringToDouble("0x1234") -> NaN // junk_string_value. | |||
// StringToDouble("01234") -> 668.0. | |||
// StringToDouble("") -> 0.0 // empty_string_value. | |||
// StringToDouble(" ") -> 0.0 // empty_string_value. | |||
// StringToDouble(" 1") -> 1.0 | |||
// StringToDouble("0x") -> NaN // junk_string_value. | |||
// StringToDouble("0123e45") -> NaN // junk_string_value. | |||
// StringToDouble("01239E45") -> 1239e45. | |||
// StringToDouble("-infinity") -> NaN // junk_string_value. | |||
// StringToDouble("NaN") -> NaN // junk_string_value. | |||
StringToDoubleConverter(int flags, | |||
double empty_string_value, | |||
double junk_string_value, | |||
const char* infinity_symbol, | |||
const char* nan_symbol) | |||
: flags_(flags), | |||
empty_string_value_(empty_string_value), | |||
junk_string_value_(junk_string_value), | |||
infinity_symbol_(infinity_symbol), | |||
nan_symbol_(nan_symbol) { | |||
} | |||
// Performs the conversion. | |||
// The output parameter 'processed_characters_count' is set to the number | |||
// of characters that have been processed to read the number. | |||
// Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included | |||
// in the 'processed_characters_count'. Trailing junk is never included. | |||
double StringToDouble(const char* buffer, | |||
int length, | |||
int* processed_characters_count) { | |||
return StringToIeee(buffer, length, processed_characters_count, true); | |||
} | |||
// Same as StringToDouble but reads a float. | |||
// Note that this is not equivalent to static_cast<float>(StringToDouble(...)) | |||
// due to potential double-rounding. | |||
float StringToFloat(const char* buffer, | |||
int length, | |||
int* processed_characters_count) { | |||
return static_cast<float>(StringToIeee(buffer, length, | |||
processed_characters_count, false)); | |||
} | |||
private: | |||
const int flags_; | |||
const double empty_string_value_; | |||
const double junk_string_value_; | |||
const char* const infinity_symbol_; | |||
const char* const nan_symbol_; | |||
double StringToIeee(const char* buffer, | |||
int length, | |||
int* processed_characters_count, | |||
bool read_as_double); | |||
DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter); | |||
}; | |||
} // namespace double_conversion | |||
#endif // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ |
@ -0,0 +1,664 @@ | |||
// Copyright 2012 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#include "fast-dtoa.h" | |||
#include "cached-powers.h" | |||
#include "diy-fp.h" | |||
#include "ieee.h" | |||
namespace double_conversion { | |||
// The minimal and maximal target exponent define the range of w's binary | |||
// exponent, where 'w' is the result of multiplying the input by a cached power | |||
// of ten. | |||
// | |||
// A different range might be chosen on a different platform, to optimize digit | |||
// generation, but a smaller range requires more powers of ten to be cached. | |||
static const int kMinimalTargetExponent = -60; | |||
static const int kMaximalTargetExponent = -32; | |||
// Adjusts the last digit of the generated number, and screens out generated | |||
// solutions that may be inaccurate. A solution may be inaccurate if it is | |||
// outside the safe interval, or if we cannot prove that it is closer to the | |||
// input than a neighboring representation of the same length. | |||
// | |||
// Input: * buffer containing the digits of too_high / 10^kappa | |||
// * the buffer's length | |||
// * distance_too_high_w == (too_high - w).f() * unit | |||
// * unsafe_interval == (too_high - too_low).f() * unit | |||
// * rest = (too_high - buffer * 10^kappa).f() * unit | |||
// * ten_kappa = 10^kappa * unit | |||
// * unit = the common multiplier | |||
// Output: returns true if the buffer is guaranteed to contain the closest | |||
// representable number to the input. | |||
// Modifies the generated digits in the buffer to approach (round towards) w. | |||
static bool RoundWeed(Vector<char> buffer, | |||
int length, | |||
uint64_t distance_too_high_w, | |||
uint64_t unsafe_interval, | |||
uint64_t rest, | |||
uint64_t ten_kappa, | |||
uint64_t unit) { | |||
uint64_t small_distance = distance_too_high_w - unit; | |||
uint64_t big_distance = distance_too_high_w + unit; | |||
// Let w_low = too_high - big_distance, and | |||
// w_high = too_high - small_distance. | |||
// Note: w_low < w < w_high | |||
// | |||
// The real w (* unit) must lie somewhere inside the interval | |||
// ]w_low; w_high[ (often written as "(w_low; w_high)") | |||
// Basically the buffer currently contains a number in the unsafe interval | |||
// ]too_low; too_high[ with too_low < w < too_high | |||
// | |||
// too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |||
// ^v 1 unit ^ ^ ^ ^ | |||
// boundary_high --------------------- . . . . | |||
// ^v 1 unit . . . . | |||
// - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . . | |||
// . . ^ . . | |||
// . big_distance . . . | |||
// . . . . rest | |||
// small_distance . . . . | |||
// v . . . . | |||
// w_high - - - - - - - - - - - - - - - - - - . . . . | |||
// ^v 1 unit . . . . | |||
// w ---------------------------------------- . . . . | |||
// ^v 1 unit v . . . | |||
// w_low - - - - - - - - - - - - - - - - - - - - - . . . | |||
// . . v | |||
// buffer --------------------------------------------------+-------+-------- | |||
// . . | |||
// safe_interval . | |||
// v . | |||
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . | |||
// ^v 1 unit . | |||
// boundary_low ------------------------- unsafe_interval | |||
// ^v 1 unit v | |||
// too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |||
// | |||
// | |||
// Note that the value of buffer could lie anywhere inside the range too_low | |||
// to too_high. | |||
// | |||
// boundary_low, boundary_high and w are approximations of the real boundaries | |||
// and v (the input number). They are guaranteed to be precise up to one unit. | |||
// In fact the error is guaranteed to be strictly less than one unit. | |||
// | |||
// Anything that lies outside the unsafe interval is guaranteed not to round | |||
// to v when read again. | |||
// Anything that lies inside the safe interval is guaranteed to round to v | |||
// when read again. | |||
// If the number inside the buffer lies inside the unsafe interval but not | |||
// inside the safe interval then we simply do not know and bail out (returning | |||
// false). | |||
// | |||
// Similarly we have to take into account the imprecision of 'w' when finding | |||
// the closest representation of 'w'. If we have two potential | |||
// representations, and one is closer to both w_low and w_high, then we know | |||
// it is closer to the actual value v. | |||
// | |||
// By generating the digits of too_high we got the largest (closest to | |||
// too_high) buffer that is still in the unsafe interval. In the case where | |||
// w_high < buffer < too_high we try to decrement the buffer. | |||
// This way the buffer approaches (rounds towards) w. | |||
// There are 3 conditions that stop the decrementation process: | |||
// 1) the buffer is already below w_high | |||
// 2) decrementing the buffer would make it leave the unsafe interval | |||
// 3) decrementing the buffer would yield a number below w_high and farther | |||
// away than the current number. In other words: | |||
// (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high | |||
// Instead of using the buffer directly we use its distance to too_high. | |||
// Conceptually rest ~= too_high - buffer | |||
// We need to do the following tests in this order to avoid over- and | |||
// underflows. | |||
ASSERT(rest <= unsafe_interval); | |||
while (rest < small_distance && // Negated condition 1 | |||
unsafe_interval - rest >= ten_kappa && // Negated condition 2 | |||
(rest + ten_kappa < small_distance || // buffer{-1} > w_high | |||
small_distance - rest >= rest + ten_kappa - small_distance)) { | |||
buffer[length - 1]--; | |||
rest += ten_kappa; | |||
} | |||
// We have approached w+ as much as possible. We now test if approaching w- | |||
// would require changing the buffer. If yes, then we have two possible | |||
// representations close to w, but we cannot decide which one is closer. | |||
if (rest < big_distance && | |||
unsafe_interval - rest >= ten_kappa && | |||
(rest + ten_kappa < big_distance || | |||
big_distance - rest > rest + ten_kappa - big_distance)) { | |||
return false; | |||
} | |||
// Weeding test. | |||
// The safe interval is [too_low + 2 ulp; too_high - 2 ulp] | |||
// Since too_low = too_high - unsafe_interval this is equivalent to | |||
// [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] | |||
// Conceptually we have: rest ~= too_high - buffer | |||
return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); | |||
} | |||
// Rounds the buffer upwards if the result is closer to v by possibly adding | |||
// 1 to the buffer. If the precision of the calculation is not sufficient to | |||
// round correctly, return false. | |||
// The rounding might shift the whole buffer in which case the kappa is | |||
// adjusted. For example "99", kappa = 3 might become "10", kappa = 4. | |||
// | |||
// If 2*rest > ten_kappa then the buffer needs to be round up. | |||
// rest can have an error of +/- 1 unit. This function accounts for the | |||
// imprecision and returns false, if the rounding direction cannot be | |||
// unambiguously determined. | |||
// | |||
// Precondition: rest < ten_kappa. | |||
static bool RoundWeedCounted(Vector<char> buffer, | |||
int length, | |||
uint64_t rest, | |||
uint64_t ten_kappa, | |||
uint64_t unit, | |||
int* kappa) { | |||
ASSERT(rest < ten_kappa); | |||
// The following tests are done in a specific order to avoid overflows. They | |||
// will work correctly with any uint64 values of rest < ten_kappa and unit. | |||
// | |||
// If the unit is too big, then we don't know which way to round. For example | |||
// a unit of 50 means that the real number lies within rest +/- 50. If | |||
// 10^kappa == 40 then there is no way to tell which way to round. | |||
if (unit >= ten_kappa) return false; | |||
// Even if unit is just half the size of 10^kappa we are already completely | |||
// lost. (And after the previous test we know that the expression will not | |||
// over/underflow.) | |||
if (ten_kappa - unit <= unit) return false; | |||
// If 2 * (rest + unit) <= 10^kappa we can safely round down. | |||
if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) { | |||
return true; | |||
} | |||
// If 2 * (rest - unit) >= 10^kappa, then we can safely round up. | |||
if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) { | |||
// Increment the last digit recursively until we find a non '9' digit. | |||
buffer[length - 1]++; | |||
for (int i = length - 1; i > 0; --i) { | |||
if (buffer[i] != '0' + 10) break; | |||
buffer[i] = '0'; | |||
buffer[i - 1]++; | |||
} | |||
// If the first digit is now '0'+ 10 we had a buffer with all '9's. With the | |||
// exception of the first digit all digits are now '0'. Simply switch the | |||
// first digit to '1' and adjust the kappa. Example: "99" becomes "10" and | |||
// the power (the kappa) is increased. | |||
if (buffer[0] == '0' + 10) { | |||
buffer[0] = '1'; | |||
(*kappa) += 1; | |||
} | |||
return true; | |||
} | |||
return false; | |||
} | |||
// Returns the biggest power of ten that is less than or equal to the given | |||
// number. We furthermore receive the maximum number of bits 'number' has. | |||
// | |||
// Returns power == 10^(exponent_plus_one-1) such that | |||
// power <= number < power * 10. | |||
// If number_bits == 0 then 0^(0-1) is returned. | |||
// The number of bits must be <= 32. | |||
// Precondition: number < (1 << (number_bits + 1)). | |||
// Inspired by the method for finding an integer log base 10 from here: | |||
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 | |||
static unsigned int const kSmallPowersOfTen[] = | |||
{0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, | |||
1000000000}; | |||
static void BiggestPowerTen(uint32_t number, | |||
int number_bits, | |||
uint32_t* power, | |||
int* exponent_plus_one) { | |||
ASSERT(number < (1u << (number_bits + 1))); | |||
// 1233/4096 is approximately 1/lg(10). | |||
int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12); | |||
// We increment to skip over the first entry in the kPowersOf10 table. | |||
// Note: kPowersOf10[i] == 10^(i-1). | |||
exponent_plus_one_guess++; | |||
// We don't have any guarantees that 2^number_bits <= number. | |||
// TODO(floitsch): can we change the 'while' into an 'if'? We definitely see | |||
// number < (2^number_bits - 1), but I haven't encountered | |||
// number < (2^number_bits - 2) yet. | |||
while (number < kSmallPowersOfTen[exponent_plus_one_guess]) { | |||
exponent_plus_one_guess--; | |||
} | |||
*power = kSmallPowersOfTen[exponent_plus_one_guess]; | |||
*exponent_plus_one = exponent_plus_one_guess; | |||
} | |||
// Generates the digits of input number w. | |||
// w is a floating-point number (DiyFp), consisting of a significand and an | |||
// exponent. Its exponent is bounded by kMinimalTargetExponent and | |||
// kMaximalTargetExponent. | |||
// Hence -60 <= w.e() <= -32. | |||
// | |||
// Returns false if it fails, in which case the generated digits in the buffer | |||
// should not be used. | |||
// Preconditions: | |||
// * low, w and high are correct up to 1 ulp (unit in the last place). That | |||
// is, their error must be less than a unit of their last digits. | |||
// * low.e() == w.e() == high.e() | |||
// * low < w < high, and taking into account their error: low~ <= high~ | |||
// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent | |||
// Postconditions: returns false if procedure fails. | |||
// otherwise: | |||
// * buffer is not null-terminated, but len contains the number of digits. | |||
// * buffer contains the shortest possible decimal digit-sequence | |||
// such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the | |||
// correct values of low and high (without their error). | |||
// * if more than one decimal representation gives the minimal number of | |||
// decimal digits then the one closest to W (where W is the correct value | |||
// of w) is chosen. | |||
// Remark: this procedure takes into account the imprecision of its input | |||
// numbers. If the precision is not enough to guarantee all the postconditions | |||
// then false is returned. This usually happens rarely (~0.5%). | |||
// | |||
// Say, for the sake of example, that | |||
// w.e() == -48, and w.f() == 0x1234567890abcdef | |||
// w's value can be computed by w.f() * 2^w.e() | |||
// We can obtain w's integral digits by simply shifting w.f() by -w.e(). | |||
// -> w's integral part is 0x1234 | |||
// w's fractional part is therefore 0x567890abcdef. | |||
// Printing w's integral part is easy (simply print 0x1234 in decimal). | |||
// In order to print its fraction we repeatedly multiply the fraction by 10 and | |||
// get each digit. Example the first digit after the point would be computed by | |||
// (0x567890abcdef * 10) >> 48. -> 3 | |||
// The whole thing becomes slightly more complicated because we want to stop | |||
// once we have enough digits. That is, once the digits inside the buffer | |||
// represent 'w' we can stop. Everything inside the interval low - high | |||
// represents w. However we have to pay attention to low, high and w's | |||
// imprecision. | |||
static bool DigitGen(DiyFp low, | |||
DiyFp w, | |||
DiyFp high, | |||
Vector<char> buffer, | |||
int* length, | |||
int* kappa) { | |||
ASSERT(low.e() == w.e() && w.e() == high.e()); | |||
ASSERT(low.f() + 1 <= high.f() - 1); | |||
ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); | |||
// low, w and high are imprecise, but by less than one ulp (unit in the last | |||
// place). | |||
// If we remove (resp. add) 1 ulp from low (resp. high) we are certain that | |||
// the new numbers are outside of the interval we want the final | |||
// representation to lie in. | |||
// Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield | |||
// numbers that are certain to lie in the interval. We will use this fact | |||
// later on. | |||
// We will now start by generating the digits within the uncertain | |||
// interval. Later we will weed out representations that lie outside the safe | |||
// interval and thus _might_ lie outside the correct interval. | |||
uint64_t unit = 1; | |||
DiyFp too_low = DiyFp(low.f() - unit, low.e()); | |||
DiyFp too_high = DiyFp(high.f() + unit, high.e()); | |||
// too_low and too_high are guaranteed to lie outside the interval we want the | |||
// generated number in. | |||
DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); | |||
// We now cut the input number into two parts: the integral digits and the | |||
// fractionals. We will not write any decimal separator though, but adapt | |||
// kappa instead. | |||
// Reminder: we are currently computing the digits (stored inside the buffer) | |||
// such that: too_low < buffer * 10^kappa < too_high | |||
// We use too_high for the digit_generation and stop as soon as possible. | |||
// If we stop early we effectively round down. | |||
DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); | |||
// Division by one is a shift. | |||
uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e()); | |||
// Modulo by one is an and. | |||
uint64_t fractionals = too_high.f() & (one.f() - 1); | |||
uint32_t divisor; | |||
int divisor_exponent_plus_one; | |||
BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), | |||
&divisor, &divisor_exponent_plus_one); | |||
*kappa = divisor_exponent_plus_one; | |||
*length = 0; | |||
// Loop invariant: buffer = too_high / 10^kappa (integer division) | |||
// The invariant holds for the first iteration: kappa has been initialized | |||
// with the divisor exponent + 1. And the divisor is the biggest power of ten | |||
// that is smaller than integrals. | |||
while (*kappa > 0) { | |||
int digit = integrals / divisor; | |||
buffer[*length] = '0' + digit; | |||
(*length)++; | |||
integrals %= divisor; | |||
(*kappa)--; | |||
// Note that kappa now equals the exponent of the divisor and that the | |||
// invariant thus holds again. | |||
uint64_t rest = | |||
(static_cast<uint64_t>(integrals) << -one.e()) + fractionals; | |||
// Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) | |||
// Reminder: unsafe_interval.e() == one.e() | |||
if (rest < unsafe_interval.f()) { | |||
// Rounding down (by not emitting the remaining digits) yields a number | |||
// that lies within the unsafe interval. | |||
return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), | |||
unsafe_interval.f(), rest, | |||
static_cast<uint64_t>(divisor) << -one.e(), unit); | |||
} | |||
divisor /= 10; | |||
} | |||
// The integrals have been generated. We are at the point of the decimal | |||
// separator. In the following loop we simply multiply the remaining digits by | |||
// 10 and divide by one. We just need to pay attention to multiply associated | |||
// data (like the interval or 'unit'), too. | |||
// Note that the multiplication by 10 does not overflow, because w.e >= -60 | |||
// and thus one.e >= -60. | |||
ASSERT(one.e() >= -60); | |||
ASSERT(fractionals < one.f()); | |||
ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); | |||
while (true) { | |||
fractionals *= 10; | |||
unit *= 10; | |||
unsafe_interval.set_f(unsafe_interval.f() * 10); | |||
// Integer division by one. | |||
int digit = static_cast<int>(fractionals >> -one.e()); | |||
buffer[*length] = '0' + digit; | |||
(*length)++; | |||
fractionals &= one.f() - 1; // Modulo by one. | |||
(*kappa)--; | |||
if (fractionals < unsafe_interval.f()) { | |||
return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit, | |||
unsafe_interval.f(), fractionals, one.f(), unit); | |||
} | |||
} | |||
} | |||
// Generates (at most) requested_digits digits of input number w. | |||
// w is a floating-point number (DiyFp), consisting of a significand and an | |||
// exponent. Its exponent is bounded by kMinimalTargetExponent and | |||
// kMaximalTargetExponent. | |||
// Hence -60 <= w.e() <= -32. | |||
// | |||
// Returns false if it fails, in which case the generated digits in the buffer | |||
// should not be used. | |||
// Preconditions: | |||
// * w is correct up to 1 ulp (unit in the last place). That | |||
// is, its error must be strictly less than a unit of its last digit. | |||
// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent | |||
// | |||
// Postconditions: returns false if procedure fails. | |||
// otherwise: | |||
// * buffer is not null-terminated, but length contains the number of | |||
// digits. | |||
// * the representation in buffer is the most precise representation of | |||
// requested_digits digits. | |||
// * buffer contains at most requested_digits digits of w. If there are less | |||
// than requested_digits digits then some trailing '0's have been removed. | |||
// * kappa is such that | |||
// w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2. | |||
// | |||
// Remark: This procedure takes into account the imprecision of its input | |||
// numbers. If the precision is not enough to guarantee all the postconditions | |||
// then false is returned. This usually happens rarely, but the failure-rate | |||
// increases with higher requested_digits. | |||
static bool DigitGenCounted(DiyFp w, | |||
int requested_digits, | |||
Vector<char> buffer, | |||
int* length, | |||
int* kappa) { | |||
ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); | |||
ASSERT(kMinimalTargetExponent >= -60); | |||
ASSERT(kMaximalTargetExponent <= -32); | |||
// w is assumed to have an error less than 1 unit. Whenever w is scaled we | |||
// also scale its error. | |||
uint64_t w_error = 1; | |||
// We cut the input number into two parts: the integral digits and the | |||
// fractional digits. We don't emit any decimal separator, but adapt kappa | |||
// instead. Example: instead of writing "1.2" we put "12" into the buffer and | |||
// increase kappa by 1. | |||
DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); | |||
// Division by one is a shift. | |||
uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e()); | |||
// Modulo by one is an and. | |||
uint64_t fractionals = w.f() & (one.f() - 1); | |||
uint32_t divisor; | |||
int divisor_exponent_plus_one; | |||
BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), | |||
&divisor, &divisor_exponent_plus_one); | |||
*kappa = divisor_exponent_plus_one; | |||
*length = 0; | |||
// Loop invariant: buffer = w / 10^kappa (integer division) | |||
// The invariant holds for the first iteration: kappa has been initialized | |||
// with the divisor exponent + 1. And the divisor is the biggest power of ten | |||
// that is smaller than 'integrals'. | |||
while (*kappa > 0) { | |||
int digit = integrals / divisor; | |||
buffer[*length] = '0' + digit; | |||
(*length)++; | |||
requested_digits--; | |||
integrals %= divisor; | |||
(*kappa)--; | |||
// Note that kappa now equals the exponent of the divisor and that the | |||
// invariant thus holds again. | |||
if (requested_digits == 0) break; | |||
divisor /= 10; | |||
} | |||
if (requested_digits == 0) { | |||
uint64_t rest = | |||
(static_cast<uint64_t>(integrals) << -one.e()) + fractionals; | |||
return RoundWeedCounted(buffer, *length, rest, | |||
static_cast<uint64_t>(divisor) << -one.e(), w_error, | |||
kappa); | |||
} | |||
// The integrals have been generated. We are at the point of the decimal | |||
// separator. In the following loop we simply multiply the remaining digits by | |||
// 10 and divide by one. We just need to pay attention to multiply associated | |||
// data (the 'unit'), too. | |||
// Note that the multiplication by 10 does not overflow, because w.e >= -60 | |||
// and thus one.e >= -60. | |||
ASSERT(one.e() >= -60); | |||
ASSERT(fractionals < one.f()); | |||
ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); | |||
while (requested_digits > 0 && fractionals > w_error) { | |||
fractionals *= 10; | |||
w_error *= 10; | |||
// Integer division by one. | |||
int digit = static_cast<int>(fractionals >> -one.e()); | |||
buffer[*length] = '0' + digit; | |||
(*length)++; | |||
requested_digits--; | |||
fractionals &= one.f() - 1; // Modulo by one. | |||
(*kappa)--; | |||
} | |||
if (requested_digits != 0) return false; | |||
return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error, | |||
kappa); | |||
} | |||
// Provides a decimal representation of v. | |||
// Returns true if it succeeds, otherwise the result cannot be trusted. | |||
// There will be *length digits inside the buffer (not null-terminated). | |||
// If the function returns true then | |||
// v == (double) (buffer * 10^decimal_exponent). | |||
// The digits in the buffer are the shortest representation possible: no | |||
// 0.09999999999999999 instead of 0.1. The shorter representation will even be | |||
// chosen even if the longer one would be closer to v. | |||
// The last digit will be closest to the actual v. That is, even if several | |||
// digits might correctly yield 'v' when read again, the closest will be | |||
// computed. | |||
static bool Grisu3(double v, | |||
FastDtoaMode mode, | |||
Vector<char> buffer, | |||
int* length, | |||
int* decimal_exponent) { | |||
DiyFp w = Double(v).AsNormalizedDiyFp(); | |||
// boundary_minus and boundary_plus are the boundaries between v and its | |||
// closest floating-point neighbors. Any number strictly between | |||
// boundary_minus and boundary_plus will round to v when convert to a double. | |||
// Grisu3 will never output representations that lie exactly on a boundary. | |||
DiyFp boundary_minus, boundary_plus; | |||
if (mode == FAST_DTOA_SHORTEST) { | |||
Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); | |||
} else { | |||
ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE); | |||
float single_v = static_cast<float>(v); | |||
Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus); | |||
} | |||
ASSERT(boundary_plus.e() == w.e()); | |||
DiyFp ten_mk; // Cached power of ten: 10^-k | |||
int mk; // -k | |||
int ten_mk_minimal_binary_exponent = | |||
kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); | |||
int ten_mk_maximal_binary_exponent = | |||
kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); | |||
PowersOfTenCache::GetCachedPowerForBinaryExponentRange( | |||
ten_mk_minimal_binary_exponent, | |||
ten_mk_maximal_binary_exponent, | |||
&ten_mk, &mk); | |||
ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + | |||
DiyFp::kSignificandSize) && | |||
(kMaximalTargetExponent >= w.e() + ten_mk.e() + | |||
DiyFp::kSignificandSize)); | |||
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a | |||
// 64 bit significand and ten_mk is thus only precise up to 64 bits. | |||
// The DiyFp::Times procedure rounds its result, and ten_mk is approximated | |||
// too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now | |||
// off by a small amount. | |||
// In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. | |||
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then | |||
// (f-1) * 2^e < w*10^k < (f+1) * 2^e | |||
DiyFp scaled_w = DiyFp::Times(w, ten_mk); | |||
ASSERT(scaled_w.e() == | |||
boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); | |||
// In theory it would be possible to avoid some recomputations by computing | |||
// the difference between w and boundary_minus/plus (a power of 2) and to | |||
// compute scaled_boundary_minus/plus by subtracting/adding from | |||
// scaled_w. However the code becomes much less readable and the speed | |||
// enhancements are not terriffic. | |||
DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); | |||
DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); | |||
// DigitGen will generate the digits of scaled_w. Therefore we have | |||
// v == (double) (scaled_w * 10^-mk). | |||
// Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an | |||
// integer than it will be updated. For instance if scaled_w == 1.23 then | |||
// the buffer will be filled with "123" und the decimal_exponent will be | |||
// decreased by 2. | |||
int kappa; | |||
bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, | |||
buffer, length, &kappa); | |||
*decimal_exponent = -mk + kappa; | |||
return result; | |||
} | |||
// The "counted" version of grisu3 (see above) only generates requested_digits | |||
// number of digits. This version does not generate the shortest representation, | |||
// and with enough requested digits 0.1 will at some point print as 0.9999999... | |||
// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and | |||
// therefore the rounding strategy for halfway cases is irrelevant. | |||
static bool Grisu3Counted(double v, | |||
int requested_digits, | |||
Vector<char> buffer, | |||
int* length, | |||
int* decimal_exponent) { | |||
DiyFp w = Double(v).AsNormalizedDiyFp(); | |||
DiyFp ten_mk; // Cached power of ten: 10^-k | |||
int mk; // -k | |||
int ten_mk_minimal_binary_exponent = | |||
kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); | |||
int ten_mk_maximal_binary_exponent = | |||
kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); | |||
PowersOfTenCache::GetCachedPowerForBinaryExponentRange( | |||
ten_mk_minimal_binary_exponent, | |||
ten_mk_maximal_binary_exponent, | |||
&ten_mk, &mk); | |||
ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + | |||
DiyFp::kSignificandSize) && | |||
(kMaximalTargetExponent >= w.e() + ten_mk.e() + | |||
DiyFp::kSignificandSize)); | |||
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a | |||
// 64 bit significand and ten_mk is thus only precise up to 64 bits. | |||
// The DiyFp::Times procedure rounds its result, and ten_mk is approximated | |||
// too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now | |||
// off by a small amount. | |||
// In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. | |||
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then | |||
// (f-1) * 2^e < w*10^k < (f+1) * 2^e | |||
DiyFp scaled_w = DiyFp::Times(w, ten_mk); | |||
// We now have (double) (scaled_w * 10^-mk). | |||
// DigitGen will generate the first requested_digits digits of scaled_w and | |||
// return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It | |||
// will not always be exactly the same since DigitGenCounted only produces a | |||
// limited number of digits.) | |||
int kappa; | |||
bool result = DigitGenCounted(scaled_w, requested_digits, | |||
buffer, length, &kappa); | |||
*decimal_exponent = -mk + kappa; | |||
return result; | |||
} | |||
bool FastDtoa(double v, | |||
FastDtoaMode mode, | |||
int requested_digits, | |||
Vector<char> buffer, | |||
int* length, | |||
int* decimal_point) { | |||
ASSERT(v > 0); | |||
ASSERT(!Double(v).IsSpecial()); | |||
bool result = false; | |||
int decimal_exponent = 0; | |||
switch (mode) { | |||
case FAST_DTOA_SHORTEST: | |||
case FAST_DTOA_SHORTEST_SINGLE: | |||
result = Grisu3(v, mode, buffer, length, &decimal_exponent); | |||
break; | |||
case FAST_DTOA_PRECISION: | |||
result = Grisu3Counted(v, requested_digits, | |||
buffer, length, &decimal_exponent); | |||
break; | |||
default: | |||
UNREACHABLE(); | |||
} | |||
if (result) { | |||
*decimal_point = *length + decimal_exponent; | |||
buffer[*length] = '\0'; | |||
} | |||
return result; | |||
} | |||
} // namespace double_conversion |
@ -0,0 +1,88 @@ | |||
// Copyright 2010 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#ifndef DOUBLE_CONVERSION_FAST_DTOA_H_ | |||
#define DOUBLE_CONVERSION_FAST_DTOA_H_ | |||
#include "utils.h" | |||
namespace double_conversion { | |||
enum FastDtoaMode { | |||
// Computes the shortest representation of the given input. The returned | |||
// result will be the most accurate number of this length. Longer | |||
// representations might be more accurate. | |||
FAST_DTOA_SHORTEST, | |||
// Same as FAST_DTOA_SHORTEST but for single-precision floats. | |||
FAST_DTOA_SHORTEST_SINGLE, | |||
// Computes a representation where the precision (number of digits) is | |||
// given as input. The precision is independent of the decimal point. | |||
FAST_DTOA_PRECISION | |||
}; | |||
// FastDtoa will produce at most kFastDtoaMaximalLength digits. This does not | |||
// include the terminating '\0' character. | |||
static const int kFastDtoaMaximalLength = 17; | |||
// Same for single-precision numbers. | |||
static const int kFastDtoaMaximalSingleLength = 9; | |||
// Provides a decimal representation of v. | |||
// The result should be interpreted as buffer * 10^(point - length). | |||
// | |||
// Precondition: | |||
// * v must be a strictly positive finite double. | |||
// | |||
// Returns true if it succeeds, otherwise the result can not be trusted. | |||
// There will be *length digits inside the buffer followed by a null terminator. | |||
// If the function returns true and mode equals | |||
// - FAST_DTOA_SHORTEST, then | |||
// the parameter requested_digits is ignored. | |||
// The result satisfies | |||
// v == (double) (buffer * 10^(point - length)). | |||
// The digits in the buffer are the shortest representation possible. E.g. | |||
// if 0.099999999999 and 0.1 represent the same double then "1" is returned | |||
// with point = 0. | |||
// The last digit will be closest to the actual v. That is, even if several | |||
// digits might correctly yield 'v' when read again, the buffer will contain | |||
// the one closest to v. | |||
// - FAST_DTOA_PRECISION, then | |||
// the buffer contains requested_digits digits. | |||
// the difference v - (buffer * 10^(point-length)) is closest to zero for | |||
// all possible representations of requested_digits digits. | |||
// If there are two values that are equally close, then FastDtoa returns | |||
// false. | |||
// For both modes the buffer must be large enough to hold the result. | |||
bool FastDtoa(double d, | |||
FastDtoaMode mode, | |||
int requested_digits, | |||
Vector<char> buffer, | |||
int* length, | |||
int* decimal_point); | |||
} // namespace double_conversion | |||
#endif // DOUBLE_CONVERSION_FAST_DTOA_H_ |
@ -0,0 +1,402 @@ | |||
// Copyright 2010 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#include <math.h> | |||
#include "fixed-dtoa.h" | |||
#include "ieee.h" | |||
namespace double_conversion { | |||
// Represents a 128bit type. This class should be replaced by a native type on | |||
// platforms that support 128bit integers. | |||
class UInt128 { | |||
public: | |||
UInt128() : high_bits_(0), low_bits_(0) { } | |||
UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { } | |||
void Multiply(uint32_t multiplicand) { | |||
uint64_t accumulator; | |||
accumulator = (low_bits_ & kMask32) * multiplicand; | |||
uint32_t part = static_cast<uint32_t>(accumulator & kMask32); | |||
accumulator >>= 32; | |||
accumulator = accumulator + (low_bits_ >> 32) * multiplicand; | |||
low_bits_ = (accumulator << 32) + part; | |||
accumulator >>= 32; | |||
accumulator = accumulator + (high_bits_ & kMask32) * multiplicand; | |||
part = static_cast<uint32_t>(accumulator & kMask32); | |||
accumulator >>= 32; | |||
accumulator = accumulator + (high_bits_ >> 32) * multiplicand; | |||
high_bits_ = (accumulator << 32) + part; | |||
ASSERT((accumulator >> 32) == 0); | |||
} | |||
void Shift(int shift_amount) { | |||
ASSERT(-64 <= shift_amount && shift_amount <= 64); | |||
if (shift_amount == 0) { | |||
return; | |||
} else if (shift_amount == -64) { | |||
high_bits_ = low_bits_; | |||
low_bits_ = 0; | |||
} else if (shift_amount == 64) { | |||
low_bits_ = high_bits_; | |||
high_bits_ = 0; | |||
} else if (shift_amount <= 0) { | |||
high_bits_ <<= -shift_amount; | |||
high_bits_ += low_bits_ >> (64 + shift_amount); | |||
low_bits_ <<= -shift_amount; | |||
} else { | |||
low_bits_ >>= shift_amount; | |||
low_bits_ += high_bits_ << (64 - shift_amount); | |||
high_bits_ >>= shift_amount; | |||
} | |||
} | |||
// Modifies *this to *this MOD (2^power). | |||
// Returns *this DIV (2^power). | |||
int DivModPowerOf2(int power) { | |||
if (power >= 64) { | |||
int result = static_cast<int>(high_bits_ >> (power - 64)); | |||
high_bits_ -= static_cast<uint64_t>(result) << (power - 64); | |||
return result; | |||
} else { | |||
uint64_t part_low = low_bits_ >> power; | |||
uint64_t part_high = high_bits_ << (64 - power); | |||
int result = static_cast<int>(part_low + part_high); | |||
high_bits_ = 0; | |||
low_bits_ -= part_low << power; | |||
return result; | |||
} | |||
} | |||
bool IsZero() const { | |||
return high_bits_ == 0 && low_bits_ == 0; | |||
} | |||
int BitAt(int position) { | |||
if (position >= 64) { | |||
return static_cast<int>(high_bits_ >> (position - 64)) & 1; | |||
} else { | |||
return static_cast<int>(low_bits_ >> position) & 1; | |||
} | |||
} | |||
private: | |||
static const uint64_t kMask32 = 0xFFFFFFFF; | |||
// Value == (high_bits_ << 64) + low_bits_ | |||
uint64_t high_bits_; | |||
uint64_t low_bits_; | |||
}; | |||
static const int kDoubleSignificandSize = 53; // Includes the hidden bit. | |||
static void FillDigits32FixedLength(uint32_t number, int requested_length, | |||
Vector<char> buffer, int* length) { | |||
for (int i = requested_length - 1; i >= 0; --i) { | |||
buffer[(*length) + i] = '0' + number % 10; | |||
number /= 10; | |||
} | |||
*length += requested_length; | |||
} | |||
static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) { | |||
int number_length = 0; | |||
// We fill the digits in reverse order and exchange them afterwards. | |||
while (number != 0) { | |||
int digit = number % 10; | |||
number /= 10; | |||
buffer[(*length) + number_length] = '0' + digit; | |||
number_length++; | |||
} | |||
// Exchange the digits. | |||
int i = *length; | |||
int j = *length + number_length - 1; | |||
while (i < j) { | |||
char tmp = buffer[i]; | |||
buffer[i] = buffer[j]; | |||
buffer[j] = tmp; | |||
i++; | |||
j--; | |||
} | |||
*length += number_length; | |||
} | |||
static void FillDigits64FixedLength(uint64_t number, int requested_length, | |||
Vector<char> buffer, int* length) { | |||
const uint32_t kTen7 = 10000000; | |||
// For efficiency cut the number into 3 uint32_t parts, and print those. | |||
uint32_t part2 = static_cast<uint32_t>(number % kTen7); | |||
number /= kTen7; | |||
uint32_t part1 = static_cast<uint32_t>(number % kTen7); | |||
uint32_t part0 = static_cast<uint32_t>(number / kTen7); | |||
FillDigits32FixedLength(part0, 3, buffer, length); | |||
FillDigits32FixedLength(part1, 7, buffer, length); | |||
FillDigits32FixedLength(part2, 7, buffer, length); | |||
} | |||
static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) { | |||
const uint32_t kTen7 = 10000000; | |||
// For efficiency cut the number into 3 uint32_t parts, and print those. | |||
uint32_t part2 = static_cast<uint32_t>(number % kTen7); | |||
number /= kTen7; | |||
uint32_t part1 = static_cast<uint32_t>(number % kTen7); | |||
uint32_t part0 = static_cast<uint32_t>(number / kTen7); | |||
if (part0 != 0) { | |||
FillDigits32(part0, buffer, length); | |||
FillDigits32FixedLength(part1, 7, buffer, length); | |||
FillDigits32FixedLength(part2, 7, buffer, length); | |||
} else if (part1 != 0) { | |||
FillDigits32(part1, buffer, length); | |||
FillDigits32FixedLength(part2, 7, buffer, length); | |||
} else { | |||
FillDigits32(part2, buffer, length); | |||
} | |||
} | |||
static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) { | |||
// An empty buffer represents 0. | |||
if (*length == 0) { | |||
buffer[0] = '1'; | |||
*decimal_point = 1; | |||
*length = 1; | |||
return; | |||
} | |||
// Round the last digit until we either have a digit that was not '9' or until | |||
// we reached the first digit. | |||
buffer[(*length) - 1]++; | |||
for (int i = (*length) - 1; i > 0; --i) { | |||
if (buffer[i] != '0' + 10) { | |||
return; | |||
} | |||
buffer[i] = '0'; | |||
buffer[i - 1]++; | |||
} | |||
// If the first digit is now '0' + 10, we would need to set it to '0' and add | |||
// a '1' in front. However we reach the first digit only if all following | |||
// digits had been '9' before rounding up. Now all trailing digits are '0' and | |||
// we simply switch the first digit to '1' and update the decimal-point | |||
// (indicating that the point is now one digit to the right). | |||
if (buffer[0] == '0' + 10) { | |||
buffer[0] = '1'; | |||
(*decimal_point)++; | |||
} | |||
} | |||
// The given fractionals number represents a fixed-point number with binary | |||
// point at bit (-exponent). | |||
// Preconditions: | |||
// -128 <= exponent <= 0. | |||
// 0 <= fractionals * 2^exponent < 1 | |||
// The buffer holds the result. | |||
// The function will round its result. During the rounding-process digits not | |||
// generated by this function might be updated, and the decimal-point variable | |||
// might be updated. If this function generates the digits 99 and the buffer | |||
// already contained "199" (thus yielding a buffer of "19999") then a | |||
// rounding-up will change the contents of the buffer to "20000". | |||
static void FillFractionals(uint64_t fractionals, int exponent, | |||
int fractional_count, Vector<char> buffer, | |||
int* length, int* decimal_point) { | |||
ASSERT(-128 <= exponent && exponent <= 0); | |||
// 'fractionals' is a fixed-point number, with binary point at bit | |||
// (-exponent). Inside the function the non-converted remainder of fractionals | |||
// is a fixed-point number, with binary point at bit 'point'. | |||
if (-exponent <= 64) { | |||
// One 64 bit number is sufficient. | |||
ASSERT(fractionals >> 56 == 0); | |||
int point = -exponent; | |||
for (int i = 0; i < fractional_count; ++i) { | |||
if (fractionals == 0) break; | |||
// Instead of multiplying by 10 we multiply by 5 and adjust the point | |||
// location. This way the fractionals variable will not overflow. | |||
// Invariant at the beginning of the loop: fractionals < 2^point. | |||
// Initially we have: point <= 64 and fractionals < 2^56 | |||
// After each iteration the point is decremented by one. | |||
// Note that 5^3 = 125 < 128 = 2^7. | |||
// Therefore three iterations of this loop will not overflow fractionals | |||
// (even without the subtraction at the end of the loop body). At this | |||
// time point will satisfy point <= 61 and therefore fractionals < 2^point | |||
// and any further multiplication of fractionals by 5 will not overflow. | |||
fractionals *= 5; | |||
point--; | |||
int digit = static_cast<int>(fractionals >> point); | |||
buffer[*length] = '0' + digit; | |||
(*length)++; | |||
fractionals -= static_cast<uint64_t>(digit) << point; | |||
} | |||
// If the first bit after the point is set we have to round up. | |||
if (((fractionals >> (point - 1)) & 1) == 1) { | |||
RoundUp(buffer, length, decimal_point); | |||
} | |||
} else { // We need 128 bits. | |||
ASSERT(64 < -exponent && -exponent <= 128); | |||
UInt128 fractionals128 = UInt128(fractionals, 0); | |||
fractionals128.Shift(-exponent - 64); | |||
int point = 128; | |||
for (int i = 0; i < fractional_count; ++i) { | |||
if (fractionals128.IsZero()) break; | |||
// As before: instead of multiplying by 10 we multiply by 5 and adjust the | |||
// point location. | |||
// This multiplication will not overflow for the same reasons as before. | |||
fractionals128.Multiply(5); | |||
point--; | |||
int digit = fractionals128.DivModPowerOf2(point); | |||
buffer[*length] = '0' + digit; | |||
(*length)++; | |||
} | |||
if (fractionals128.BitAt(point - 1) == 1) { | |||
RoundUp(buffer, length, decimal_point); | |||
} | |||
} | |||
} | |||
// Removes leading and trailing zeros. | |||
// If leading zeros are removed then the decimal point position is adjusted. | |||
static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) { | |||
while (*length > 0 && buffer[(*length) - 1] == '0') { | |||
(*length)--; | |||
} | |||
int first_non_zero = 0; | |||
while (first_non_zero < *length && buffer[first_non_zero] == '0') { | |||
first_non_zero++; | |||
} | |||
if (first_non_zero != 0) { | |||
for (int i = first_non_zero; i < *length; ++i) { | |||
buffer[i - first_non_zero] = buffer[i]; | |||
} | |||
*length -= first_non_zero; | |||
*decimal_point -= first_non_zero; | |||
} | |||
} | |||
bool FastFixedDtoa(double v, | |||
int fractional_count, | |||
Vector<char> buffer, | |||
int* length, | |||
int* decimal_point) { | |||
const uint32_t kMaxUInt32 = 0xFFFFFFFF; | |||
uint64_t significand = Double(v).Significand(); | |||
int exponent = Double(v).Exponent(); | |||
// v = significand * 2^exponent (with significand a 53bit integer). | |||
// If the exponent is larger than 20 (i.e. we may have a 73bit number) then we | |||
// don't know how to compute the representation. 2^73 ~= 9.5*10^21. | |||
// If necessary this limit could probably be increased, but we don't need | |||
// more. | |||
if (exponent > 20) return false; | |||
if (fractional_count > 20) return false; | |||
*length = 0; | |||
// At most kDoubleSignificandSize bits of the significand are non-zero. | |||
// Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero | |||
// bits: 0..11*..0xxx..53*..xx | |||
if (exponent + kDoubleSignificandSize > 64) { | |||
// The exponent must be > 11. | |||
// | |||
// We know that v = significand * 2^exponent. | |||
// And the exponent > 11. | |||
// We simplify the task by dividing v by 10^17. | |||
// The quotient delivers the first digits, and the remainder fits into a 64 | |||
// bit number. | |||
// Dividing by 10^17 is equivalent to dividing by 5^17*2^17. | |||
const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5); // 5^17 | |||
uint64_t divisor = kFive17; | |||
int divisor_power = 17; | |||
uint64_t dividend = significand; | |||
uint32_t quotient; | |||
uint64_t remainder; | |||
// Let v = f * 2^e with f == significand and e == exponent. | |||
// Then need q (quotient) and r (remainder) as follows: | |||
// v = q * 10^17 + r | |||
// f * 2^e = q * 10^17 + r | |||
// f * 2^e = q * 5^17 * 2^17 + r | |||
// If e > 17 then | |||
// f * 2^(e-17) = q * 5^17 + r/2^17 | |||
// else | |||
// f = q * 5^17 * 2^(17-e) + r/2^e | |||
if (exponent > divisor_power) { | |||
// We only allow exponents of up to 20 and therefore (17 - e) <= 3 | |||
dividend <<= exponent - divisor_power; | |||
quotient = static_cast<uint32_t>(dividend / divisor); | |||
remainder = (dividend % divisor) << divisor_power; | |||
} else { | |||
divisor <<= divisor_power - exponent; | |||
quotient = static_cast<uint32_t>(dividend / divisor); | |||
remainder = (dividend % divisor) << exponent; | |||
} | |||
FillDigits32(quotient, buffer, length); | |||
FillDigits64FixedLength(remainder, divisor_power, buffer, length); | |||
*decimal_point = *length; | |||
} else if (exponent >= 0) { | |||
// 0 <= exponent <= 11 | |||
significand <<= exponent; | |||
FillDigits64(significand, buffer, length); | |||
*decimal_point = *length; | |||
} else if (exponent > -kDoubleSignificandSize) { | |||
// We have to cut the number. | |||
uint64_t integrals = significand >> -exponent; | |||
uint64_t fractionals = significand - (integrals << -exponent); | |||
if (integrals > kMaxUInt32) { | |||
FillDigits64(integrals, buffer, length); | |||
} else { | |||
FillDigits32(static_cast<uint32_t>(integrals), buffer, length); | |||
} | |||
*decimal_point = *length; | |||
FillFractionals(fractionals, exponent, fractional_count, | |||
buffer, length, decimal_point); | |||
} else if (exponent < -128) { | |||
// This configuration (with at most 20 digits) means that all digits must be | |||
// 0. | |||
ASSERT(fractional_count <= 20); | |||
buffer[0] = '\0'; | |||
*length = 0; | |||
*decimal_point = -fractional_count; | |||
} else { | |||
*decimal_point = 0; | |||
FillFractionals(significand, exponent, fractional_count, | |||
buffer, length, decimal_point); | |||
} | |||
TrimZeros(buffer, length, decimal_point); | |||
buffer[*length] = '\0'; | |||
if ((*length) == 0) { | |||
// The string is empty and the decimal_point thus has no importance. Mimick | |||
// Gay's dtoa and and set it to -fractional_count. | |||
*decimal_point = -fractional_count; | |||
} | |||
return true; | |||
} | |||
} // namespace double_conversion |
@ -0,0 +1,56 @@ | |||
// Copyright 2010 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#ifndef DOUBLE_CONVERSION_FIXED_DTOA_H_ | |||
#define DOUBLE_CONVERSION_FIXED_DTOA_H_ | |||
#include "utils.h" | |||
namespace double_conversion { | |||
// Produces digits necessary to print a given number with | |||
// 'fractional_count' digits after the decimal point. | |||
// The buffer must be big enough to hold the result plus one terminating null | |||
// character. | |||
// | |||
// The produced digits might be too short in which case the caller has to fill | |||
// the gaps with '0's. | |||
// Example: FastFixedDtoa(0.001, 5, ...) is allowed to return buffer = "1", and | |||
// decimal_point = -2. | |||
// Halfway cases are rounded towards +/-Infinity (away from 0). The call | |||
// FastFixedDtoa(0.15, 2, ...) thus returns buffer = "2", decimal_point = 0. | |||
// The returned buffer may contain digits that would be truncated from the | |||
// shortest representation of the input. | |||
// | |||
// This method only works for some parameters. If it can't handle the input it | |||
// returns false. The output is null-terminated when the function succeeds. | |||
bool FastFixedDtoa(double v, int fractional_count, | |||
Vector<char> buffer, int* length, int* decimal_point); | |||
} // namespace double_conversion | |||
#endif // DOUBLE_CONVERSION_FIXED_DTOA_H_ |
@ -0,0 +1,398 @@ | |||
// Copyright 2012 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#ifndef DOUBLE_CONVERSION_DOUBLE_H_ | |||
#define DOUBLE_CONVERSION_DOUBLE_H_ | |||
#include "diy-fp.h" | |||
namespace double_conversion { | |||
// We assume that doubles and uint64_t have the same endianness. | |||
static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); } | |||
static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); } | |||
static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); } | |||
static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); } | |||
// Helper functions for doubles. | |||
class Double { | |||
public: | |||
static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000); | |||
static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000); | |||
static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF); | |||
static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000); | |||
static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit. | |||
static const int kSignificandSize = 53; | |||
Double() : d64_(0) {} | |||
explicit Double(double d) : d64_(double_to_uint64(d)) {} | |||
explicit Double(uint64_t d64) : d64_(d64) {} | |||
explicit Double(DiyFp diy_fp) | |||
: d64_(DiyFpToUint64(diy_fp)) {} | |||
// The value encoded by this Double must be greater or equal to +0.0. | |||
// It must not be special (infinity, or NaN). | |||
DiyFp AsDiyFp() const { | |||
ASSERT(Sign() > 0); | |||
ASSERT(!IsSpecial()); | |||
return DiyFp(Significand(), Exponent()); | |||
} | |||
// The value encoded by this Double must be strictly greater than 0. | |||
DiyFp AsNormalizedDiyFp() const { | |||
ASSERT(value() > 0.0); | |||
uint64_t f = Significand(); | |||
int e = Exponent(); | |||
// The current double could be a denormal. | |||
while ((f & kHiddenBit) == 0) { | |||
f <<= 1; | |||
e--; | |||
} | |||
// Do the final shifts in one go. | |||
f <<= DiyFp::kSignificandSize - kSignificandSize; | |||
e -= DiyFp::kSignificandSize - kSignificandSize; | |||
return DiyFp(f, e); | |||
} | |||
// Returns the double's bit as uint64. | |||
uint64_t AsUint64() const { | |||
return d64_; | |||
} | |||
// Returns the next greater double. Returns +infinity on input +infinity. | |||
double NextDouble() const { | |||
if (d64_ == kInfinity) return Double(kInfinity).value(); | |||
if (Sign() < 0 && Significand() == 0) { | |||
// -0.0 | |||
return 0.0; | |||
} | |||
if (Sign() < 0) { | |||
return Double(d64_ - 1).value(); | |||
} else { | |||
return Double(d64_ + 1).value(); | |||
} | |||
} | |||
double PreviousDouble() const { | |||
if (d64_ == (kInfinity | kSignMask)) return -Double::Infinity(); | |||
if (Sign() < 0) { | |||
return Double(d64_ + 1).value(); | |||
} else { | |||
if (Significand() == 0) return -0.0; | |||
return Double(d64_ - 1).value(); | |||
} | |||
} | |||
int Exponent() const { | |||
if (IsDenormal()) return kDenormalExponent; | |||
uint64_t d64 = AsUint64(); | |||
int biased_e = | |||
static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); | |||
return biased_e - kExponentBias; | |||
} | |||
uint64_t Significand() const { | |||
uint64_t d64 = AsUint64(); | |||
uint64_t significand = d64 & kSignificandMask; | |||
if (!IsDenormal()) { | |||
return significand + kHiddenBit; | |||
} else { | |||
return significand; | |||
} | |||
} | |||
// Returns true if the double is a denormal. | |||
bool IsDenormal() const { | |||
uint64_t d64 = AsUint64(); | |||
return (d64 & kExponentMask) == 0; | |||
} | |||
// We consider denormals not to be special. | |||
// Hence only Infinity and NaN are special. | |||
bool IsSpecial() const { | |||
uint64_t d64 = AsUint64(); | |||
return (d64 & kExponentMask) == kExponentMask; | |||
} | |||
bool IsNan() const { | |||
uint64_t d64 = AsUint64(); | |||
return ((d64 & kExponentMask) == kExponentMask) && | |||
((d64 & kSignificandMask) != 0); | |||
} | |||
bool IsInfinite() const { | |||
uint64_t d64 = AsUint64(); | |||
return ((d64 & kExponentMask) == kExponentMask) && | |||
((d64 & kSignificandMask) == 0); | |||
} | |||
int Sign() const { | |||
uint64_t d64 = AsUint64(); | |||
return (d64 & kSignMask) == 0? 1: -1; | |||
} | |||
// Precondition: the value encoded by this Double must be greater or equal | |||
// than +0.0. | |||
DiyFp UpperBoundary() const { | |||
ASSERT(Sign() > 0); | |||
return DiyFp(Significand() * 2 + 1, Exponent() - 1); | |||
} | |||
// Computes the two boundaries of this. | |||
// The bigger boundary (m_plus) is normalized. The lower boundary has the same | |||
// exponent as m_plus. | |||
// Precondition: the value encoded by this Double must be greater than 0. | |||
void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { | |||
ASSERT(value() > 0.0); | |||
DiyFp v = this->AsDiyFp(); | |||
DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); | |||
DiyFp m_minus; | |||
if (LowerBoundaryIsCloser()) { | |||
m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); | |||
} else { | |||
m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); | |||
} | |||
m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); | |||
m_minus.set_e(m_plus.e()); | |||
*out_m_plus = m_plus; | |||
*out_m_minus = m_minus; | |||
} | |||
bool LowerBoundaryIsCloser() const { | |||
// The boundary is closer if the significand is of the form f == 2^p-1 then | |||
// the lower boundary is closer. | |||
// Think of v = 1000e10 and v- = 9999e9. | |||
// Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but | |||
// at a distance of 1e8. | |||
// The only exception is for the smallest normal: the largest denormal is | |||
// at the same distance as its successor. | |||
// Note: denormals have the same exponent as the smallest normals. | |||
bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0); | |||
return physical_significand_is_zero && (Exponent() != kDenormalExponent); | |||
} | |||
double value() const { return uint64_to_double(d64_); } | |||
// Returns the significand size for a given order of magnitude. | |||
// If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. | |||
// This function returns the number of significant binary digits v will have | |||
// once it's encoded into a double. In almost all cases this is equal to | |||
// kSignificandSize. The only exceptions are denormals. They start with | |||
// leading zeroes and their effective significand-size is hence smaller. | |||
static int SignificandSizeForOrderOfMagnitude(int order) { | |||
if (order >= (kDenormalExponent + kSignificandSize)) { | |||
return kSignificandSize; | |||
} | |||
if (order <= kDenormalExponent) return 0; | |||
return order - kDenormalExponent; | |||
} | |||
static double Infinity() { | |||
return Double(kInfinity).value(); | |||
} | |||
static double NaN() { | |||
return Double(kNaN).value(); | |||
} | |||
private: | |||
static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; | |||
static const int kDenormalExponent = -kExponentBias + 1; | |||
static const int kMaxExponent = 0x7FF - kExponentBias; | |||
static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000); | |||
static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000); | |||
const uint64_t d64_; | |||
static uint64_t DiyFpToUint64(DiyFp diy_fp) { | |||
uint64_t significand = diy_fp.f(); | |||
int exponent = diy_fp.e(); | |||
while (significand > kHiddenBit + kSignificandMask) { | |||
significand >>= 1; | |||
exponent++; | |||
} | |||
if (exponent >= kMaxExponent) { | |||
return kInfinity; | |||
} | |||
if (exponent < kDenormalExponent) { | |||
return 0; | |||
} | |||
while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { | |||
significand <<= 1; | |||
exponent--; | |||
} | |||
uint64_t biased_exponent; | |||
if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { | |||
biased_exponent = 0; | |||
} else { | |||
biased_exponent = static_cast<uint64_t>(exponent + kExponentBias); | |||
} | |||
return (significand & kSignificandMask) | | |||
(biased_exponent << kPhysicalSignificandSize); | |||
} | |||
}; | |||
class Single { | |||
public: | |||
static const uint32_t kSignMask = 0x80000000; | |||
static const uint32_t kExponentMask = 0x7F800000; | |||
static const uint32_t kSignificandMask = 0x007FFFFF; | |||
static const uint32_t kHiddenBit = 0x00800000; | |||
static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit. | |||
static const int kSignificandSize = 24; | |||
Single() : d32_(0) {} | |||
explicit Single(float f) : d32_(float_to_uint32(f)) {} | |||
explicit Single(uint32_t d32) : d32_(d32) {} | |||
// The value encoded by this Single must be greater or equal to +0.0. | |||
// It must not be special (infinity, or NaN). | |||
DiyFp AsDiyFp() const { | |||
ASSERT(Sign() > 0); | |||
ASSERT(!IsSpecial()); | |||
return DiyFp(Significand(), Exponent()); | |||
} | |||
// Returns the single's bit as uint64. | |||
uint32_t AsUint32() const { | |||
return d32_; | |||
} | |||
int Exponent() const { | |||
if (IsDenormal()) return kDenormalExponent; | |||
uint32_t d32 = AsUint32(); | |||
int biased_e = | |||
static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize); | |||
return biased_e - kExponentBias; | |||
} | |||
uint32_t Significand() const { | |||
uint32_t d32 = AsUint32(); | |||
uint32_t significand = d32 & kSignificandMask; | |||
if (!IsDenormal()) { | |||
return significand + kHiddenBit; | |||
} else { | |||
return significand; | |||
} | |||
} | |||
// Returns true if the single is a denormal. | |||
bool IsDenormal() const { | |||
uint32_t d32 = AsUint32(); | |||
return (d32 & kExponentMask) == 0; | |||
} | |||
// We consider denormals not to be special. | |||
// Hence only Infinity and NaN are special. | |||
bool IsSpecial() const { | |||
uint32_t d32 = AsUint32(); | |||
return (d32 & kExponentMask) == kExponentMask; | |||
} | |||
bool IsNan() const { | |||
uint32_t d32 = AsUint32(); | |||
return ((d32 & kExponentMask) == kExponentMask) && | |||
((d32 & kSignificandMask) != 0); | |||
} | |||
bool IsInfinite() const { | |||
uint32_t d32 = AsUint32(); | |||
return ((d32 & kExponentMask) == kExponentMask) && | |||
((d32 & kSignificandMask) == 0); | |||
} | |||
int Sign() const { | |||
uint32_t d32 = AsUint32(); | |||
return (d32 & kSignMask) == 0? 1: -1; | |||
} | |||
// Computes the two boundaries of this. | |||
// The bigger boundary (m_plus) is normalized. The lower boundary has the same | |||
// exponent as m_plus. | |||
// Precondition: the value encoded by this Single must be greater than 0. | |||
void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { | |||
ASSERT(value() > 0.0); | |||
DiyFp v = this->AsDiyFp(); | |||
DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); | |||
DiyFp m_minus; | |||
if (LowerBoundaryIsCloser()) { | |||
m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); | |||
} else { | |||
m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); | |||
} | |||
m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); | |||
m_minus.set_e(m_plus.e()); | |||
*out_m_plus = m_plus; | |||
*out_m_minus = m_minus; | |||
} | |||
// Precondition: the value encoded by this Single must be greater or equal | |||
// than +0.0. | |||
DiyFp UpperBoundary() const { | |||
ASSERT(Sign() > 0); | |||
return DiyFp(Significand() * 2 + 1, Exponent() - 1); | |||
} | |||
bool LowerBoundaryIsCloser() const { | |||
// The boundary is closer if the significand is of the form f == 2^p-1 then | |||
// the lower boundary is closer. | |||
// Think of v = 1000e10 and v- = 9999e9. | |||
// Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but | |||
// at a distance of 1e8. | |||
// The only exception is for the smallest normal: the largest denormal is | |||
// at the same distance as its successor. | |||
// Note: denormals have the same exponent as the smallest normals. | |||
bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0); | |||
return physical_significand_is_zero && (Exponent() != kDenormalExponent); | |||
} | |||
float value() const { return uint32_to_float(d32_); } | |||
static float Infinity() { | |||
return Single(kInfinity).value(); | |||
} | |||
static float NaN() { | |||
return Single(kNaN).value(); | |||
} | |||
private: | |||
static const int kExponentBias = 0x7F + kPhysicalSignificandSize; | |||
static const int kDenormalExponent = -kExponentBias + 1; | |||
static const int kMaxExponent = 0xFF - kExponentBias; | |||
static const uint32_t kInfinity = 0x7F800000; | |||
static const uint32_t kNaN = 0x7FC00000; | |||
const uint32_t d32_; | |||
}; | |||
} // namespace double_conversion | |||
#endif // DOUBLE_CONVERSION_DOUBLE_H_ |
@ -0,0 +1,554 @@ | |||
// Copyright 2010 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#include <stdarg.h> | |||
#include <limits.h> | |||
#include "strtod.h" | |||
#include "bignum.h" | |||
#include "cached-powers.h" | |||
#include "ieee.h" | |||
namespace double_conversion { | |||
// 2^53 = 9007199254740992. | |||
// Any integer with at most 15 decimal digits will hence fit into a double | |||
// (which has a 53bit significand) without loss of precision. | |||
static const int kMaxExactDoubleIntegerDecimalDigits = 15; | |||
// 2^64 = 18446744073709551616 > 10^19 | |||
static const int kMaxUint64DecimalDigits = 19; | |||
// Max double: 1.7976931348623157 x 10^308 | |||
// Min non-zero double: 4.9406564584124654 x 10^-324 | |||
// Any x >= 10^309 is interpreted as +infinity. | |||
// Any x <= 10^-324 is interpreted as 0. | |||
// Note that 2.5e-324 (despite being smaller than the min double) will be read | |||
// as non-zero (equal to the min non-zero double). | |||
static const int kMaxDecimalPower = 309; | |||
static const int kMinDecimalPower = -324; | |||
// 2^64 = 18446744073709551616 | |||
static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); | |||
static const double exact_powers_of_ten[] = { | |||
1.0, // 10^0 | |||
10.0, | |||
100.0, | |||
1000.0, | |||
10000.0, | |||
100000.0, | |||
1000000.0, | |||
10000000.0, | |||
100000000.0, | |||
1000000000.0, | |||
10000000000.0, // 10^10 | |||
100000000000.0, | |||
1000000000000.0, | |||
10000000000000.0, | |||
100000000000000.0, | |||
1000000000000000.0, | |||
10000000000000000.0, | |||
100000000000000000.0, | |||
1000000000000000000.0, | |||
10000000000000000000.0, | |||
100000000000000000000.0, // 10^20 | |||
1000000000000000000000.0, | |||
// 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 | |||
10000000000000000000000.0 | |||
}; | |||
static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten); | |||
// Maximum number of significant digits in the decimal representation. | |||
// In fact the value is 772 (see conversions.cc), but to give us some margin | |||
// we round up to 780. | |||
static const int kMaxSignificantDecimalDigits = 780; | |||
static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { | |||
for (int i = 0; i < buffer.length(); i++) { | |||
if (buffer[i] != '0') { | |||
return buffer.SubVector(i, buffer.length()); | |||
} | |||
} | |||
return Vector<const char>(buffer.start(), 0); | |||
} | |||
static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { | |||
for (int i = buffer.length() - 1; i >= 0; --i) { | |||
if (buffer[i] != '0') { | |||
return buffer.SubVector(0, i + 1); | |||
} | |||
} | |||
return Vector<const char>(buffer.start(), 0); | |||
} | |||
static void CutToMaxSignificantDigits(Vector<const char> buffer, | |||
int exponent, | |||
char* significant_buffer, | |||
int* significant_exponent) { | |||
for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { | |||
significant_buffer[i] = buffer[i]; | |||
} | |||
// The input buffer has been trimmed. Therefore the last digit must be | |||
// different from '0'. | |||
ASSERT(buffer[buffer.length() - 1] != '0'); | |||
// Set the last digit to be non-zero. This is sufficient to guarantee | |||
// correct rounding. | |||
significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; | |||
*significant_exponent = | |||
exponent + (buffer.length() - kMaxSignificantDecimalDigits); | |||
} | |||
// Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits. | |||
// If possible the input-buffer is reused, but if the buffer needs to be | |||
// modified (due to cutting), then the input needs to be copied into the | |||
// buffer_copy_space. | |||
static void TrimAndCut(Vector<const char> buffer, int exponent, | |||
char* buffer_copy_space, int space_size, | |||
Vector<const char>* trimmed, int* updated_exponent) { | |||
Vector<const char> left_trimmed = TrimLeadingZeros(buffer); | |||
Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed); | |||
exponent += left_trimmed.length() - right_trimmed.length(); | |||
if (right_trimmed.length() > kMaxSignificantDecimalDigits) { | |||
ASSERT(space_size >= kMaxSignificantDecimalDigits); | |||
CutToMaxSignificantDigits(right_trimmed, exponent, | |||
buffer_copy_space, updated_exponent); | |||
*trimmed = Vector<const char>(buffer_copy_space, | |||
kMaxSignificantDecimalDigits); | |||
} else { | |||
*trimmed = right_trimmed; | |||
*updated_exponent = exponent; | |||
} | |||
} | |||
// Reads digits from the buffer and converts them to a uint64. | |||
// Reads in as many digits as fit into a uint64. | |||
// When the string starts with "1844674407370955161" no further digit is read. | |||
// Since 2^64 = 18446744073709551616 it would still be possible read another | |||
// digit if it was less or equal than 6, but this would complicate the code. | |||
static uint64_t ReadUint64(Vector<const char> buffer, | |||
int* number_of_read_digits) { | |||
uint64_t result = 0; | |||
int i = 0; | |||
while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { | |||
int digit = buffer[i++] - '0'; | |||
ASSERT(0 <= digit && digit <= 9); | |||
result = 10 * result + digit; | |||
} | |||
*number_of_read_digits = i; | |||
return result; | |||
} | |||
// Reads a DiyFp from the buffer. | |||
// The returned DiyFp is not necessarily normalized. | |||
// If remaining_decimals is zero then the returned DiyFp is accurate. | |||
// Otherwise it has been rounded and has error of at most 1/2 ulp. | |||
static void ReadDiyFp(Vector<const char> buffer, | |||
DiyFp* result, | |||
int* remaining_decimals) { | |||
int read_digits; | |||
uint64_t significand = ReadUint64(buffer, &read_digits); | |||
if (buffer.length() == read_digits) { | |||
*result = DiyFp(significand, 0); | |||
*remaining_decimals = 0; | |||
} else { | |||
// Round the significand. | |||
if (buffer[read_digits] >= '5') { | |||
significand++; | |||
} | |||
// Compute the binary exponent. | |||
int exponent = 0; | |||
*result = DiyFp(significand, exponent); | |||
*remaining_decimals = buffer.length() - read_digits; | |||
} | |||
} | |||
static bool DoubleStrtod(Vector<const char> trimmed, | |||
int exponent, | |||
double* result) { | |||
#if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) | |||
// On x86 the floating-point stack can be 64 or 80 bits wide. If it is | |||
// 80 bits wide (as is the case on Linux) then double-rounding occurs and the | |||
// result is not accurate. | |||
// We know that Windows32 uses 64 bits and is therefore accurate. | |||
// Note that the ARM simulator is compiled for 32bits. It therefore exhibits | |||
// the same problem. | |||
return false; | |||
#endif | |||
if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { | |||
int read_digits; | |||
// The trimmed input fits into a double. | |||
// If the 10^exponent (resp. 10^-exponent) fits into a double too then we | |||
// can compute the result-double simply by multiplying (resp. dividing) the | |||
// two numbers. | |||
// This is possible because IEEE guarantees that floating-point operations | |||
// return the best possible approximation. | |||
if (exponent < 0 && -exponent < kExactPowersOfTenSize) { | |||
// 10^-exponent fits into a double. | |||
*result = static_cast<double>(ReadUint64(trimmed, &read_digits)); | |||
ASSERT(read_digits == trimmed.length()); | |||
*result /= exact_powers_of_ten[-exponent]; | |||
return true; | |||
} | |||
if (0 <= exponent && exponent < kExactPowersOfTenSize) { | |||
// 10^exponent fits into a double. | |||
*result = static_cast<double>(ReadUint64(trimmed, &read_digits)); | |||
ASSERT(read_digits == trimmed.length()); | |||
*result *= exact_powers_of_ten[exponent]; | |||
return true; | |||
} | |||
int remaining_digits = | |||
kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); | |||
if ((0 <= exponent) && | |||
(exponent - remaining_digits < kExactPowersOfTenSize)) { | |||
// The trimmed string was short and we can multiply it with | |||
// 10^remaining_digits. As a result the remaining exponent now fits | |||
// into a double too. | |||
*result = static_cast<double>(ReadUint64(trimmed, &read_digits)); | |||
ASSERT(read_digits == trimmed.length()); | |||
*result *= exact_powers_of_ten[remaining_digits]; | |||
*result *= exact_powers_of_ten[exponent - remaining_digits]; | |||
return true; | |||
} | |||
} | |||
return false; | |||
} | |||
// Returns 10^exponent as an exact DiyFp. | |||
// The given exponent must be in the range [1; kDecimalExponentDistance[. | |||
static DiyFp AdjustmentPowerOfTen(int exponent) { | |||
ASSERT(0 < exponent); | |||
ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); | |||
// Simply hardcode the remaining powers for the given decimal exponent | |||
// distance. | |||
ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); | |||
switch (exponent) { | |||
case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60); | |||
case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57); | |||
case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54); | |||
case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50); | |||
case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47); | |||
case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44); | |||
case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40); | |||
default: | |||
UNREACHABLE(); | |||
return DiyFp(0, 0); | |||
} | |||
} | |||
// If the function returns true then the result is the correct double. | |||
// Otherwise it is either the correct double or the double that is just below | |||
// the correct double. | |||
static bool DiyFpStrtod(Vector<const char> buffer, | |||
int exponent, | |||
double* result) { | |||
DiyFp input; | |||
int remaining_decimals; | |||
ReadDiyFp(buffer, &input, &remaining_decimals); | |||
// Since we may have dropped some digits the input is not accurate. | |||
// If remaining_decimals is different than 0 than the error is at most | |||
// .5 ulp (unit in the last place). | |||
// We don't want to deal with fractions and therefore keep a common | |||
// denominator. | |||
const int kDenominatorLog = 3; | |||
const int kDenominator = 1 << kDenominatorLog; | |||
// Move the remaining decimals into the exponent. | |||
exponent += remaining_decimals; | |||
int error = (remaining_decimals == 0 ? 0 : kDenominator / 2); | |||
int old_e = input.e(); | |||
input.Normalize(); | |||
error <<= old_e - input.e(); | |||
ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); | |||
if (exponent < PowersOfTenCache::kMinDecimalExponent) { | |||
*result = 0.0; | |||
return true; | |||
} | |||
DiyFp cached_power; | |||
int cached_decimal_exponent; | |||
PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, | |||
&cached_power, | |||
&cached_decimal_exponent); | |||
if (cached_decimal_exponent != exponent) { | |||
int adjustment_exponent = exponent - cached_decimal_exponent; | |||
DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); | |||
input.Multiply(adjustment_power); | |||
if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { | |||
// The product of input with the adjustment power fits into a 64 bit | |||
// integer. | |||
ASSERT(DiyFp::kSignificandSize == 64); | |||
} else { | |||
// The adjustment power is exact. There is hence only an error of 0.5. | |||
error += kDenominator / 2; | |||
} | |||
} | |||
input.Multiply(cached_power); | |||
// The error introduced by a multiplication of a*b equals | |||
// error_a + error_b + error_a*error_b/2^64 + 0.5 | |||
// Substituting a with 'input' and b with 'cached_power' we have | |||
// error_b = 0.5 (all cached powers have an error of less than 0.5 ulp), | |||
// error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 | |||
int error_b = kDenominator / 2; | |||
int error_ab = (error == 0 ? 0 : 1); // We round up to 1. | |||
int fixed_error = kDenominator / 2; | |||
error += error_b + error_ab + fixed_error; | |||
old_e = input.e(); | |||
input.Normalize(); | |||
error <<= old_e - input.e(); | |||
// See if the double's significand changes if we add/subtract the error. | |||
int order_of_magnitude = DiyFp::kSignificandSize + input.e(); | |||
int effective_significand_size = | |||
Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); | |||
int precision_digits_count = | |||
DiyFp::kSignificandSize - effective_significand_size; | |||
if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { | |||
// This can only happen for very small denormals. In this case the | |||
// half-way multiplied by the denominator exceeds the range of an uint64. | |||
// Simply shift everything to the right. | |||
int shift_amount = (precision_digits_count + kDenominatorLog) - | |||
DiyFp::kSignificandSize + 1; | |||
input.set_f(input.f() >> shift_amount); | |||
input.set_e(input.e() + shift_amount); | |||
// We add 1 for the lost precision of error, and kDenominator for | |||
// the lost precision of input.f(). | |||
error = (error >> shift_amount) + 1 + kDenominator; | |||
precision_digits_count -= shift_amount; | |||
} | |||
// We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. | |||
ASSERT(DiyFp::kSignificandSize == 64); | |||
ASSERT(precision_digits_count < 64); | |||
uint64_t one64 = 1; | |||
uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; | |||
uint64_t precision_bits = input.f() & precision_bits_mask; | |||
uint64_t half_way = one64 << (precision_digits_count - 1); | |||
precision_bits *= kDenominator; | |||
half_way *= kDenominator; | |||
DiyFp rounded_input(input.f() >> precision_digits_count, | |||
input.e() + precision_digits_count); | |||
if (precision_bits >= half_way + error) { | |||
rounded_input.set_f(rounded_input.f() + 1); | |||
} | |||
// If the last_bits are too close to the half-way case than we are too | |||
// inaccurate and round down. In this case we return false so that we can | |||
// fall back to a more precise algorithm. | |||
*result = Double(rounded_input).value(); | |||
if (half_way - error < precision_bits && precision_bits < half_way + error) { | |||
// Too imprecise. The caller will have to fall back to a slower version. | |||
// However the returned number is guaranteed to be either the correct | |||
// double, or the next-lower double. | |||
return false; | |||
} else { | |||
return true; | |||
} | |||
} | |||
// Returns | |||
// - -1 if buffer*10^exponent < diy_fp. | |||
// - 0 if buffer*10^exponent == diy_fp. | |||
// - +1 if buffer*10^exponent > diy_fp. | |||
// Preconditions: | |||
// buffer.length() + exponent <= kMaxDecimalPower + 1 | |||
// buffer.length() + exponent > kMinDecimalPower | |||
// buffer.length() <= kMaxDecimalSignificantDigits | |||
static int CompareBufferWithDiyFp(Vector<const char> buffer, | |||
int exponent, | |||
DiyFp diy_fp) { | |||
ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); | |||
ASSERT(buffer.length() + exponent > kMinDecimalPower); | |||
ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); | |||
// Make sure that the Bignum will be able to hold all our numbers. | |||
// Our Bignum implementation has a separate field for exponents. Shifts will | |||
// consume at most one bigit (< 64 bits). | |||
// ln(10) == 3.3219... | |||
ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); | |||
Bignum buffer_bignum; | |||
Bignum diy_fp_bignum; | |||
buffer_bignum.AssignDecimalString(buffer); | |||
diy_fp_bignum.AssignUInt64(diy_fp.f()); | |||
if (exponent >= 0) { | |||
buffer_bignum.MultiplyByPowerOfTen(exponent); | |||
} else { | |||
diy_fp_bignum.MultiplyByPowerOfTen(-exponent); | |||
} | |||
if (diy_fp.e() > 0) { | |||
diy_fp_bignum.ShiftLeft(diy_fp.e()); | |||
} else { | |||
buffer_bignum.ShiftLeft(-diy_fp.e()); | |||
} | |||
return Bignum::Compare(buffer_bignum, diy_fp_bignum); | |||
} | |||
// Returns true if the guess is the correct double. | |||
// Returns false, when guess is either correct or the next-lower double. | |||
static bool ComputeGuess(Vector<const char> trimmed, int exponent, | |||
double* guess) { | |||
if (trimmed.length() == 0) { | |||
*guess = 0.0; | |||
return true; | |||
} | |||
if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) { | |||
*guess = Double::Infinity(); | |||
return true; | |||
} | |||
if (exponent + trimmed.length() <= kMinDecimalPower) { | |||
*guess = 0.0; | |||
return true; | |||
} | |||
if (DoubleStrtod(trimmed, exponent, guess) || | |||
DiyFpStrtod(trimmed, exponent, guess)) { | |||
return true; | |||
} | |||
if (*guess == Double::Infinity()) { | |||
return true; | |||
} | |||
return false; | |||
} | |||
double Strtod(Vector<const char> buffer, int exponent) { | |||
char copy_buffer[kMaxSignificantDecimalDigits]; | |||
Vector<const char> trimmed; | |||
int updated_exponent; | |||
TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, | |||
&trimmed, &updated_exponent); | |||
exponent = updated_exponent; | |||
double guess; | |||
bool is_correct = ComputeGuess(trimmed, exponent, &guess); | |||
if (is_correct) return guess; | |||
DiyFp upper_boundary = Double(guess).UpperBoundary(); | |||
int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); | |||
if (comparison < 0) { | |||
return guess; | |||
} else if (comparison > 0) { | |||
return Double(guess).NextDouble(); | |||
} else if ((Double(guess).Significand() & 1) == 0) { | |||
// Round towards even. | |||
return guess; | |||
} else { | |||
return Double(guess).NextDouble(); | |||
} | |||
} | |||
float Strtof(Vector<const char> buffer, int exponent) { | |||
char copy_buffer[kMaxSignificantDecimalDigits]; | |||
Vector<const char> trimmed; | |||
int updated_exponent; | |||
TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, | |||
&trimmed, &updated_exponent); | |||
exponent = updated_exponent; | |||
double double_guess; | |||
bool is_correct = ComputeGuess(trimmed, exponent, &double_guess); | |||
float float_guess = static_cast<float>(double_guess); | |||
if (float_guess == double_guess) { | |||
// This shortcut triggers for integer values. | |||
return float_guess; | |||
} | |||
// We must catch double-rounding. Say the double has been rounded up, and is | |||
// now a boundary of a float, and rounds up again. This is why we have to | |||
// look at previous too. | |||
// Example (in decimal numbers): | |||
// input: 12349 | |||
// high-precision (4 digits): 1235 | |||
// low-precision (3 digits): | |||
// when read from input: 123 | |||
// when rounded from high precision: 124. | |||
// To do this we simply look at the neigbors of the correct result and see | |||
// if they would round to the same float. If the guess is not correct we have | |||
// to look at four values (since two different doubles could be the correct | |||
// double). | |||
double double_next = Double(double_guess).NextDouble(); | |||
double double_previous = Double(double_guess).PreviousDouble(); | |||
float f1 = static_cast<float>(double_previous); | |||
float f2 = float_guess; | |||
float f3 = static_cast<float>(double_next); | |||
float f4; | |||
if (is_correct) { | |||
f4 = f3; | |||
} else { | |||
double double_next2 = Double(double_next).NextDouble(); | |||
f4 = static_cast<float>(double_next2); | |||
} | |||
ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4); | |||
// If the guess doesn't lie near a single-precision boundary we can simply | |||
// return its float-value. | |||
if (f1 == f4) { | |||
return float_guess; | |||
} | |||
ASSERT((f1 != f2 && f2 == f3 && f3 == f4) || | |||
(f1 == f2 && f2 != f3 && f3 == f4) || | |||
(f1 == f2 && f2 == f3 && f3 != f4)); | |||
// guess and next are the two possible canditates (in the same way that | |||
// double_guess was the lower candidate for a double-precision guess). | |||
float guess = f1; | |||
float next = f4; | |||
DiyFp upper_boundary; | |||
if (guess == 0.0f) { | |||
float min_float = 1e-45f; | |||
upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp(); | |||
} else { | |||
upper_boundary = Single(guess).UpperBoundary(); | |||
} | |||
int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); | |||
if (comparison < 0) { | |||
return guess; | |||
} else if (comparison > 0) { | |||
return next; | |||
} else if ((Single(guess).Significand() & 1) == 0) { | |||
// Round towards even. | |||
return guess; | |||
} else { | |||
return next; | |||
} | |||
} | |||
} // namespace double_conversion |
@ -0,0 +1,45 @@ | |||
// Copyright 2010 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#ifndef DOUBLE_CONVERSION_STRTOD_H_ | |||
#define DOUBLE_CONVERSION_STRTOD_H_ | |||
#include "utils.h" | |||
namespace double_conversion { | |||
// The buffer must only contain digits in the range [0-9]. It must not | |||
// contain a dot or a sign. It must not start with '0', and must not be empty. | |||
double Strtod(Vector<const char> buffer, int exponent); | |||
// The buffer must only contain digits in the range [0-9]. It must not | |||
// contain a dot or a sign. It must not start with '0', and must not be empty. | |||
float Strtof(Vector<const char> buffer, int exponent); | |||
} // namespace double_conversion | |||
#endif // DOUBLE_CONVERSION_STRTOD_H_ |
@ -0,0 +1,313 @@ | |||
// Copyright 2010 the V8 project authors. All rights reserved. | |||
// Redistribution and use in source and binary forms, with or without | |||
// modification, are permitted provided that the following conditions are | |||
// met: | |||
// | |||
// * Redistributions of source code must retain the above copyright | |||
// notice, this list of conditions and the following disclaimer. | |||
// * Redistributions in binary form must reproduce the above | |||
// copyright notice, this list of conditions and the following | |||
// disclaimer in the documentation and/or other materials provided | |||
// with the distribution. | |||
// * Neither the name of Google Inc. nor the names of its | |||
// contributors may be used to endorse or promote products derived | |||
// from this software without specific prior written permission. | |||
// | |||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
#ifndef DOUBLE_CONVERSION_UTILS_H_ | |||
#define DOUBLE_CONVERSION_UTILS_H_ | |||
#include <stdlib.h> | |||
#include <string.h> | |||
#include <assert.h> | |||
#ifndef ASSERT | |||
#define ASSERT(condition) (assert(condition)) | |||
#endif | |||
#ifndef UNIMPLEMENTED | |||
#define UNIMPLEMENTED() (abort()) | |||
#endif | |||
#ifndef UNREACHABLE | |||
#define UNREACHABLE() (abort()) | |||
#endif | |||
// Double operations detection based on target architecture. | |||
// Linux uses a 80bit wide floating point stack on x86. This induces double | |||
// rounding, which in turn leads to wrong results. | |||
// An easy way to test if the floating-point operations are correct is to | |||
// evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then | |||
// the result is equal to 89255e-22. | |||
// The best way to test this, is to create a division-function and to compare | |||
// the output of the division with the expected result. (Inlining must be | |||
// disabled.) | |||
// On Linux,x86 89255e-22 != Div_double(89255.0/1e22) | |||
#if defined(_M_X64) || defined(__x86_64__) || \ | |||
defined(__ARMEL__) || defined(__avr32__) || \ | |||
defined(__hppa__) || defined(__ia64__) || \ | |||
defined(__mips__) || defined(__powerpc__) || \ | |||
defined(__sparc__) || defined(__sparc) || defined(__s390__) || \ | |||
defined(__SH4__) || defined(__alpha__) || \ | |||
defined(_MIPS_ARCH_MIPS32R2) | |||
#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 | |||
#elif defined(_M_IX86) || defined(__i386__) || defined(__i386) | |||
#if defined(_WIN32) | |||
// Windows uses a 64bit wide floating point stack. | |||
#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 | |||
#else | |||
#undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS | |||
#endif // _WIN32 | |||
#else | |||
#error Target architecture was not detected as supported by Double-Conversion. | |||
#endif | |||
#if defined(_WIN32) && !defined(__MINGW32__) | |||
typedef signed char int8_t; | |||
typedef unsigned char uint8_t; | |||
typedef short int16_t; // NOLINT | |||
typedef unsigned short uint16_t; // NOLINT | |||
typedef int int32_t; | |||
typedef unsigned int uint32_t; | |||
typedef __int64 int64_t; | |||
typedef unsigned __int64 uint64_t; | |||
// intptr_t and friends are defined in crtdefs.h through stdio.h. | |||
#else | |||
#include <stdint.h> | |||
#endif | |||
// The following macro works on both 32 and 64-bit platforms. | |||
// Usage: instead of writing 0x1234567890123456 | |||
// write UINT64_2PART_C(0x12345678,90123456); | |||
#define UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u)) | |||
// The expression ARRAY_SIZE(a) is a compile-time constant of type | |||
// size_t which represents the number of elements of the given | |||
// array. You should only use ARRAY_SIZE on statically allocated | |||
// arrays. | |||
#ifndef ARRAY_SIZE | |||
#define ARRAY_SIZE(a) \ | |||
((sizeof(a) / sizeof(*(a))) / \ | |||
static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) | |||
#endif | |||
// A macro to disallow the evil copy constructor and operator= functions | |||
// This should be used in the private: declarations for a class | |||
#ifndef DISALLOW_COPY_AND_ASSIGN | |||
#define DISALLOW_COPY_AND_ASSIGN(TypeName) \ | |||
TypeName(const TypeName&); \ | |||
void operator=(const TypeName&) | |||
#endif | |||
// A macro to disallow all the implicit constructors, namely the | |||
// default constructor, copy constructor and operator= functions. | |||
// | |||
// This should be used in the private: declarations for a class | |||
// that wants to prevent anyone from instantiating it. This is | |||
// especially useful for classes containing only static methods. | |||
#ifndef DISALLOW_IMPLICIT_CONSTRUCTORS | |||
#define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ | |||
TypeName(); \ | |||
DISALLOW_COPY_AND_ASSIGN(TypeName) | |||
#endif | |||
namespace double_conversion { | |||
static const int kCharSize = sizeof(char); | |||
// Returns the maximum of the two parameters. | |||
template <typename T> | |||
static T Max(T a, T b) { | |||
return a < b ? b : a; | |||
} | |||
// Returns the minimum of the two parameters. | |||
template <typename T> | |||
static T Min(T a, T b) { | |||
return a < b ? a : b; | |||
} | |||
inline int StrLength(const char* string) { | |||
size_t length = strlen(string); | |||
ASSERT(length == static_cast<size_t>(static_cast<int>(length))); | |||
return static_cast<int>(length); | |||
} | |||
// This is a simplified version of V8's Vector class. | |||
template <typename T> | |||
class Vector { | |||
public: | |||
Vector() : start_(NULL), length_(0) {} | |||
Vector(T* data, int length) : start_(data), length_(length) { | |||
ASSERT(length == 0 || (length > 0 && data != NULL)); | |||
} | |||
// Returns a vector using the same backing storage as this one, | |||
// spanning from and including 'from', to but not including 'to'. | |||
Vector<T> SubVector(int from, int to) { | |||
ASSERT(to <= length_); | |||
ASSERT(from < to); | |||
ASSERT(0 <= from); | |||
return Vector<T>(start() + from, to - from); | |||
} | |||
// Returns the length of the vector. | |||
int length() const { return length_; } | |||
// Returns whether or not the vector is empty. | |||
bool is_empty() const { return length_ == 0; } | |||
// Returns the pointer to the start of the data in the vector. | |||
T* start() const { return start_; } | |||
// Access individual vector elements - checks bounds in debug mode. | |||
T& operator[](int index) const { | |||
ASSERT(0 <= index && index < length_); | |||
return start_[index]; | |||
} | |||
T& first() { return start_[0]; } | |||
T& last() { return start_[length_ - 1]; } | |||
private: | |||
T* start_; | |||
int length_; | |||
}; | |||
// Helper class for building result strings in a character buffer. The | |||
// purpose of the class is to use safe operations that checks the | |||
// buffer bounds on all operations in debug mode. | |||
class StringBuilder { | |||
public: | |||
StringBuilder(char* buffer, int size) | |||
: buffer_(buffer, size), position_(0) { } | |||
~StringBuilder() { if (!is_finalized()) Finalize(); } | |||
int size() const { return buffer_.length(); } | |||
// Get the current position in the builder. | |||
int position() const { | |||
ASSERT(!is_finalized()); | |||
return position_; | |||
} | |||
// Reset the position. | |||
void Reset() { position_ = 0; } | |||
// Add a single character to the builder. It is not allowed to add | |||
// 0-characters; use the Finalize() method to terminate the string | |||
// instead. | |||
void AddCharacter(char c) { | |||
ASSERT(c != '\0'); | |||
ASSERT(!is_finalized() && position_ < buffer_.length()); | |||
buffer_[position_++] = c; | |||
} | |||
// Add an entire string to the builder. Uses strlen() internally to | |||
// compute the length of the input string. | |||
void AddString(const char* s) { | |||
AddSubstring(s, StrLength(s)); | |||
} | |||
// Add the first 'n' characters of the given string 's' to the | |||
// builder. The input string must have enough characters. | |||
void AddSubstring(const char* s, int n) { | |||
ASSERT(!is_finalized() && position_ + n < buffer_.length()); | |||
ASSERT(static_cast<size_t>(n) <= strlen(s)); | |||
memmove(&buffer_[position_], s, n * kCharSize); | |||
position_ += n; | |||
} | |||
// Add character padding to the builder. If count is non-positive, | |||
// nothing is added to the builder. | |||
void AddPadding(char c, int count) { | |||
for (int i = 0; i < count; i++) { | |||
AddCharacter(c); | |||
} | |||
} | |||
// Finalize the string by 0-terminating it and returning the buffer. | |||
char* Finalize() { | |||
ASSERT(!is_finalized() && position_ < buffer_.length()); | |||
buffer_[position_] = '\0'; | |||
// Make sure nobody managed to add a 0-character to the | |||
// buffer while building the string. | |||
ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_)); | |||
position_ = -1; | |||
ASSERT(is_finalized()); | |||
return buffer_.start(); | |||
} | |||
private: | |||
Vector<char> buffer_; | |||
int position_; | |||
bool is_finalized() const { return position_ < 0; } | |||
DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder); | |||
}; | |||
// The type-based aliasing rule allows the compiler to assume that pointers of | |||
// different types (for some definition of different) never alias each other. | |||
// Thus the following code does not work: | |||
// | |||
// float f = foo(); | |||
// int fbits = *(int*)(&f); | |||
// | |||
// The compiler 'knows' that the int pointer can't refer to f since the types | |||
// don't match, so the compiler may cache f in a register, leaving random data | |||
// in fbits. Using C++ style casts makes no difference, however a pointer to | |||
// char data is assumed to alias any other pointer. This is the 'memcpy | |||
// exception'. | |||
// | |||
// Bit_cast uses the memcpy exception to move the bits from a variable of one | |||
// type of a variable of another type. Of course the end result is likely to | |||
// be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005) | |||
// will completely optimize BitCast away. | |||
// | |||
// There is an additional use for BitCast. | |||
// Recent gccs will warn when they see casts that may result in breakage due to | |||
// the type-based aliasing rule. If you have checked that there is no breakage | |||
// you can use BitCast to cast one pointer type to another. This confuses gcc | |||
// enough that it can no longer see that you have cast one pointer type to | |||
// another thus avoiding the warning. | |||
template <class Dest, class Source> | |||
inline Dest BitCast(const Source& source) { | |||
// Compile time assertion: sizeof(Dest) == sizeof(Source) | |||
// A compile error here means your Dest and Source have different sizes. | |||
typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1]; | |||
Dest dest; | |||
memmove(&dest, &source, sizeof(dest)); | |||
return dest; | |||
} | |||
template <class Dest, class Source> | |||
inline Dest BitCast(Source* source) { | |||
return BitCast<Dest>(reinterpret_cast<uintptr_t>(source)); | |||
} | |||
} // namespace double_conversion | |||
#endif // DOUBLE_CONVERSION_UTILS_H_ |
@ -0,0 +1,33 @@ | |||
#include "double-conversion/double-conversion.h" | |||
#define BEGIN_C extern "C" { | |||
#define END_C } | |||
namespace dc = double_conversion; | |||
BEGIN_C | |||
int | |||
double_to_shortest(char* buf, size_t size, size_t* len, double val) | |||
{ | |||
int flags = dc::DoubleToStringConverter::UNIQUE_ZERO | | |||
dc::DoubleToStringConverter::EMIT_POSITIVE_EXPONENT_SIGN | | |||
dc::DoubleToStringConverter::EMIT_TRAILING_DECIMAL_POINT | | |||
dc::DoubleToStringConverter::EMIT_TRAILING_ZERO_AFTER_POINT; | |||
dc::StringBuilder builder(buf, size); | |||
dc::DoubleToStringConverter conv(flags, NULL, NULL, 'e', -6, 21, 6, 0); | |||
if(!conv.ToShortest(val, &builder)) { | |||
return 0; | |||
} | |||
*len = (size_t) builder.position(); | |||
builder.Finalize(); | |||
return 1; | |||
} | |||
END_C |