|
|
-
- local math = math
- local sin = math.sin
- local cos = math.cos
- local acos = math.acos
- local asin = math.asin
- local sqrt = math.sqrt
- local min = math.min
- local max = math.max
- local sign = math.sign
- local atan2 = math.atan2
- local clamp = Mathf.Clamp
- local abs = math.abs
- local setmetatable = setmetatable
- local getmetatable = getmetatable
- local rawget = rawget
- local rawset = rawset
- local Vector3 = Vector3
-
- local rad2Deg = Mathf.Rad2Deg
- local halfDegToRad = 0.5 * Mathf.Deg2Rad
- local _forward = Vector3.forward
- local _up = Vector3.up
- local _next = { 2, 3, 1 }
-
- local Quaternion = {}
- local get = tolua.initget(Quaternion)
-
- Quaternion.__index = function(t, k)
- local var = rawget(Quaternion, k)
-
- if var == nil then
- var = rawget(get, k)
-
- if var ~= nil then
- return var(t)
- end
- end
-
- return var
- end
-
- Quaternion.__newindex = function(t, name, k)
- if name == "eulerAngles" then
- t:SetEuler(k)
- else
- rawset(t, name, k)
- end
- end
-
- function Quaternion.New(x, y, z, w)
- local quat = {x = x or 0, y = y or 0, z = z or 0, w = w or 0}
- setmetatable(quat, Quaternion)
- return quat
- end
-
- local _new = Quaternion.New
-
- Quaternion.__call = function(t, x, y, z, w)
- return _new(x, y, z, w)
- end
-
- function Quaternion:Set(x,y,z,w)
- self.x = x or 0
- self.y = y or 0
- self.z = z or 0
- self.w = w or 0
- end
-
- function Quaternion:Clone()
- return _new(self.x, self.y, self.z, self.w)
- end
-
- function Quaternion:Get()
- return self.x, self.y, self.z, self.w
- end
-
- function Quaternion.Dot(a, b)
- return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w
- end
-
- function Quaternion.Angle(a, b)
- local dot = Quaternion.Dot(a, b)
- if dot < 0 then dot = -dot end
- return acos(min(dot, 1)) * 2 * 57.29578
- end
-
- function Quaternion.AngleAxis(angle, axis)
- local normAxis = axis:Normalize()
- angle = angle * halfDegToRad
- local s = sin(angle)
-
- local w = cos(angle)
- local x = normAxis.x * s
- local y = normAxis.y * s
- local z = normAxis.z * s
-
- return _new(x,y,z,w)
- end
-
- function Quaternion.Equals(a, b)
- return a.x == b.x and a.y == b.y and a.z == b.z and a.w == b.w
- end
-
- function Quaternion.Euler(x, y, z)
- local quat = _new()
- quat:SetEuler(x,y,z)
- return quat
- end
-
- function Quaternion:SetEuler(x, y, z)
- if y == nil and z == nil then
- y = x.y
- z = x.z
- x = x.x
- end
-
- x = x * halfDegToRad
- y = y * halfDegToRad
- z = z * halfDegToRad
-
- local sinX = sin(x)
- local cosX = cos(x)
- local sinY = sin(y)
- local cosY = cos(y)
- local sinZ = sin(z)
- local cosZ = cos(z)
-
- self.w = cosY * cosX * cosZ + sinY * sinX * sinZ
- self.x = cosY * sinX * cosZ + sinY * cosX * sinZ
- self.y = sinY * cosX * cosZ - cosY * sinX * sinZ
- self.z = cosY * cosX * sinZ - sinY * sinX * cosZ
-
- return self
- end
-
- function Quaternion:Normalize()
- local quat = self:Clone()
- quat:SetNormalize()
- return quat
- end
-
- function Quaternion:SetNormalize()
- local n = self.x * self.x + self.y * self.y + self.z * self.z + self.w * self.w
-
- if n ~= 1 and n > 0 then
- n = 1 / sqrt(n)
- self.x = self.x * n
- self.y = self.y * n
- self.z = self.z * n
- self.w = self.w * n
- end
- end
-
- --产生一个新的从from到to的四元数
- function Quaternion.FromToRotation(from, to)
- local quat = Quaternion.New()
- quat:SetFromToRotation(from, to)
- return quat
- end
-
- --设置当前四元数为 from 到 to的旋转, 注意from和to同 forward平行会同unity不一致
- function Quaternion:SetFromToRotation1(from, to)
- local v0 = from:Normalize()
- local v1 = to:Normalize()
- local d = Vector3.Dot(v0, v1)
-
- if d > -1 + 1e-6 then
- local s = sqrt((1+d) * 2)
- local invs = 1 / s
- local c = Vector3.Cross(v0, v1) * invs
- self:Set(c.x, c.y, c.z, s * 0.5)
- elseif d > 1 - 1e-6 then
- return _new(0, 0, 0, 1)
- else
- local axis = Vector3.Cross(Vector3.right, v0)
-
- if axis:SqrMagnitude() < 1e-6 then
- axis = Vector3.Cross(Vector3.forward, v0)
- end
-
- self:Set(axis.x, axis.y, axis.z, 0)
- return self
- end
-
- return self
- end
-
- local function MatrixToQuaternion(rot, quat)
- local trace = rot[1][1] + rot[2][2] + rot[3][3]
-
- if trace > 0 then
- local s = sqrt(trace + 1)
- quat.w = 0.5 * s
- s = 0.5 / s
- quat.x = (rot[3][2] - rot[2][3]) * s
- quat.y = (rot[1][3] - rot[3][1]) * s
- quat.z = (rot[2][1] - rot[1][2]) * s--]]
- quat:SetNormalize()
- else
- local i = 1
- local q = {0, 0, 0}
-
- if rot[2][2] > rot[1][1] then
- i = 2
- end
-
- if rot[3][3] > rot[i][i] then
- i = 3
- end
-
- local j = _next[i]
- local k = _next[j]
-
- local t = rot[i][i] - rot[j][j] - rot[k][k] + 1
- local s = 0.5 / sqrt(t)
- q[i] = s * t
- local w = (rot[k][j] - rot[j][k]) * s
- q[j] = (rot[j][i] + rot[i][j]) * s
- q[k] = (rot[k][i] + rot[i][k]) * s
-
- quat:Set(q[1], q[2], q[3], w)
- quat:SetNormalize()
- end
- end
-
- function Quaternion:SetFromToRotation(from, to)
- from = from:Normalize()
- to = to:Normalize()
-
- local e = Vector3.Dot(from, to)
-
- if e > 1 - 1e-6 then
- self:Set(0, 0, 0, 1)
- elseif e < -1 + 1e-6 then
- local left = {0, from.z, from.y}
- local mag = left[2] * left[2] + left[3] * left[3] --+ left[1] * left[1] = 0
-
- if mag < 1e-6 then
- left[1] = -from.z
- left[2] = 0
- left[3] = from.x
- mag = left[1] * left[1] + left[3] * left[3]
- end
-
- local invlen = 1/sqrt(mag)
- left[1] = left[1] * invlen
- left[2] = left[2] * invlen
- left[3] = left[3] * invlen
-
- local up = {0, 0, 0}
- up[1] = left[2] * from.z - left[3] * from.y
- up[2] = left[3] * from.x - left[1] * from.z
- up[3] = left[1] * from.y - left[2] * from.x
-
-
- local fxx = -from.x * from.x
- local fyy = -from.y * from.y
- local fzz = -from.z * from.z
-
- local fxy = -from.x * from.y
- local fxz = -from.x * from.z
- local fyz = -from.y * from.z
-
- local uxx = up[1] * up[1]
- local uyy = up[2] * up[2]
- local uzz = up[3] * up[3]
- local uxy = up[1] * up[2]
- local uxz = up[1] * up[3]
- local uyz = up[2] * up[3]
-
- local lxx = -left[1] * left[1]
- local lyy = -left[2] * left[2]
- local lzz = -left[3] * left[3]
- local lxy = -left[1] * left[2]
- local lxz = -left[1] * left[3]
- local lyz = -left[2] * left[3]
-
- local rot =
- {
- {fxx + uxx + lxx, fxy + uxy + lxy, fxz + uxz + lxz},
- {fxy + uxy + lxy, fyy + uyy + lyy, fyz + uyz + lyz},
- {fxz + uxz + lxz, fyz + uyz + lyz, fzz + uzz + lzz},
- }
-
- MatrixToQuaternion(rot, self)
- else
- local v = Vector3.Cross(from, to)
- local h = (1 - e) / Vector3.Dot(v, v)
-
- local hx = h * v.x
- local hz = h * v.z
- local hxy = hx * v.y
- local hxz = hx * v.z
- local hyz = hz * v.y
-
- local rot =
- {
- {e + hx*v.x, hxy - v.z, hxz + v.y},
- {hxy + v.z, e + h*v.y*v.y, hyz-v.x},
- {hxz - v.y, hyz + v.x, e + hz*v.z},
- }
-
- MatrixToQuaternion(rot, self)
- end
- end
-
- function Quaternion:Inverse()
- local quat = Quaternion.New()
-
- quat.x = -self.x
- quat.y = -self.y
- quat.z = -self.z
- quat.w = self.w
-
- return quat
- end
-
- function Quaternion.Lerp(q1, q2, t)
- t = clamp(t, 0, 1)
- local q = _new()
-
- if Quaternion.Dot(q1, q2) < 0 then
- q.x = q1.x + t * (-q2.x -q1.x)
- q.y = q1.y + t * (-q2.y -q1.y)
- q.z = q1.z + t * (-q2.z -q1.z)
- q.w = q1.w + t * (-q2.w -q1.w)
- else
- q.x = q1.x + (q2.x - q1.x) * t
- q.y = q1.y + (q2.y - q1.y) * t
- q.z = q1.z + (q2.z - q1.z) * t
- q.w = q1.w + (q2.w - q1.w) * t
- end
-
- q:SetNormalize()
- return q
- end
-
-
- function Quaternion.LookRotation(forward, up)
- local mag = forward:Magnitude()
- if mag < 1e-6 then
- LogError("error input forward to Quaternion.LookRotation" + tostring(forward))
- return nil
- end
-
- forward = forward / mag
- up = up or _up
- local right = Vector3.Cross(up, forward)
- right:SetNormalize()
- up = Vector3.Cross(forward, right)
- right = Vector3.Cross(up, forward)
-
- --[[ local quat = _new(0,0,0,1)
- local rot =
- {
- {right.x, up.x, forward.x},
- {right.y, up.y, forward.y},
- {right.z, up.z, forward.z},
- }
-
- MatrixToQuaternion(rot, quat)
- return quat--]]
-
- local t = right.x + up.y + forward.z
-
- if t > 0 then
- local x, y, z, w
- t = t + 1
- local s = 0.5 / sqrt(t)
- w = s * t
- x = (up.z - forward.y) * s
- y = (forward.x - right.z) * s
- z = (right.y - up.x) * s
-
- local ret = _new(x, y, z, w)
- ret:SetNormalize()
- return ret
- else
- local rot =
- {
- {right.x, up.x, forward.x},
- {right.y, up.y, forward.y},
- {right.z, up.z, forward.z},
- }
-
- local q = {0, 0, 0}
- local i = 1
-
- if up.y > right.x then
- i = 2
- end
-
- if forward.z > rot[i][i] then
- i = 3
- end
-
- local j = _next[i]
- local k = _next[j]
-
- local t = rot[i][i] - rot[j][j] - rot[k][k] + 1
- local s = 0.5 / sqrt(t)
- q[i] = s * t
- local w = (rot[k][j] - rot[j][k]) * s
- q[j] = (rot[j][i] + rot[i][j]) * s
- q[k] = (rot[k][i] + rot[i][k]) * s
-
- local ret = _new(q[1], q[2], q[3], w)
- ret:SetNormalize()
- return ret
- end
- end
-
- function Quaternion:SetIdentity()
- self.x = 0
- self.y = 0
- self.z = 0
- self.w = 1
- end
-
- local function UnclampedSlerp(from, to, t)
- local cosAngle = Quaternion.Dot(from, to)
-
- if cosAngle < 0 then
- cosAngle = -cosAngle
- to = Quaternion.New(-to.x, -to.y, -to.z, -to.w)
- end
-
- local t1, t2
-
- if cosAngle < 0.95 then
- local angle = acos(cosAngle)
- local sinAngle = sin(angle)
- local invSinAngle = 1 / sinAngle
- t1 = sin((1 - t) * angle) * invSinAngle
- t2 = sin(t * angle) * invSinAngle
- local quat = _new(from.x * t1 + to.x * t2, from.y * t1 + to.y * t2, from.z * t1 + to.z * t2, from.w * t1 + to.w * t2)
- return quat
- else
- return Quaternion.Lerp(from, to, t)
- end
- end
-
-
- function Quaternion.Slerp(from, to, t)
- t = clamp(t, 0, 1)
- return UnclampedSlerp(from, to, t)
- end
-
- function Quaternion.RotateTowards(from, to, maxDegreesDelta)
- local angle = Quaternion.Angle(from, to)
-
- if angle == 0 then
- return to
- end
-
- local t = min(1, maxDegreesDelta / angle)
- return UnclampedSlerp(from, to, t)
- end
-
- local function Approximately(f0, f1)
- return abs(f0 - f1) < 1e-6
- end
-
- function Quaternion:ToAngleAxis()
- local angle = 2 * acos(self.w)
-
- if Approximately(angle, 0) then
- return angle * 57.29578, Vector3.New(1, 0, 0)
- end
-
- local div = 1 / sqrt(1 - sqrt(self.w))
- return angle * 57.29578, Vector3.New(self.x * div, self.y * div, self.z * div)
- end
-
- local pi = Mathf.PI
- local half_pi = pi * 0.5
- local two_pi = 2 * pi
- local negativeFlip = -0.0001
- local positiveFlip = two_pi - 0.0001
-
- local function SanitizeEuler(euler)
- if euler.x < negativeFlip then
- euler.x = euler.x + two_pi
- elseif euler.x > positiveFlip then
- euler.x = euler.x - two_pi
- end
-
- if euler.y < negativeFlip then
- euler.y = euler.y + two_pi
- elseif euler.y > positiveFlip then
- euler.y = euler.y - two_pi
- end
-
- if euler.z < negativeFlip then
- euler.z = euler.z + two_pi
- elseif euler.z > positiveFlip then
- euler.z = euler.z + two_pi
- end
- end
-
- --from http://www.geometrictools.com/Documentation/EulerAngles.pdf
- --Order of rotations: YXZ
- function Quaternion:ToEulerAngles()
- local x = self.x
- local y = self.y
- local z = self.z
- local w = self.w
-
- local check = 2 * (y * z - w * x)
-
- if check < 0.999 then
- if check > -0.999 then
- local v = Vector3.New( -asin(check),
- atan2(2 * (x * z + w * y), 1 - 2 * (x * x + y * y)),
- atan2(2 * (x * y + w * z), 1 - 2 * (x * x + z * z)))
- SanitizeEuler(v)
- v:Mul(rad2Deg)
- return v
- else
- local v = Vector3.New(half_pi, atan2(2 * (x * y - w * z), 1 - 2 * (y * y + z * z)), 0)
- SanitizeEuler(v)
- v:Mul(rad2Deg)
- return v
- end
- else
- local v = Vector3.New(-half_pi, atan2(-2 * (x * y - w * z), 1 - 2 * (y * y + z * z)), 0)
- SanitizeEuler(v)
- v:Mul(rad2Deg)
- return v
- end
- end
-
- function Quaternion:Forward()
- return self:MulVec3(_forward)
- end
-
- function Quaternion.MulVec3(self, point)
- local vec = Vector3.New()
-
- local num = self.x * 2
- local num2 = self.y * 2
- local num3 = self.z * 2
- local num4 = self.x * num
- local num5 = self.y * num2
- local num6 = self.z * num3
- local num7 = self.x * num2
- local num8 = self.x * num3
- local num9 = self.y * num3
- local num10 = self.w * num
- local num11 = self.w * num2
- local num12 = self.w * num3
-
- vec.x = (((1 - (num5 + num6)) * point.x) + ((num7 - num12) * point.y)) + ((num8 + num11) * point.z)
- vec.y = (((num7 + num12) * point.x) + ((1 - (num4 + num6)) * point.y)) + ((num9 - num10) * point.z)
- vec.z = (((num8 - num11) * point.x) + ((num9 + num10) * point.y)) + ((1 - (num4 + num5)) * point.z)
-
- return vec
- end
-
- Quaternion.__mul = function(lhs, rhs)
- if Quaternion == getmetatable(rhs) then
- return Quaternion.New((((lhs.w * rhs.x) + (lhs.x * rhs.w)) + (lhs.y * rhs.z)) - (lhs.z * rhs.y), (((lhs.w * rhs.y) + (lhs.y * rhs.w)) + (lhs.z * rhs.x)) - (lhs.x * rhs.z), (((lhs.w * rhs.z) + (lhs.z * rhs.w)) + (lhs.x * rhs.y)) - (lhs.y * rhs.x), (((lhs.w * rhs.w) - (lhs.x * rhs.x)) - (lhs.y * rhs.y)) - (lhs.z * rhs.z))
- elseif Vector3 == getmetatable(rhs) then
- return lhs:MulVec3(rhs)
- end
- end
-
- Quaternion.__unm = function(q)
- return Quaternion.New(-q.x, -q.y, -q.z, -q.w)
- end
-
- Quaternion.__eq = function(lhs,rhs)
- return Quaternion.Dot(lhs, rhs) > 0.999999
- end
-
- Quaternion.__tostring = function(self)
- return "["..self.x..","..self.y..","..self.z..","..self.w.."]"
- end
-
- get.identity = function() return _new(0, 0, 0, 1) end
- get.eulerAngles = Quaternion.ToEulerAngles
-
- UnityEngine.Quaternion = Quaternion
- setmetatable(Quaternion, Quaternion)
- return Quaternion
|